A Disaggregate Negative Binomial Regression Procedure for Count Data Analysis

Various research areas face the methodological problems presented by nonnegative integer count data drawn from heterogeneous populations. We present a disaggregate negative binomial regression procedure for analysis of count data observed for a heterogeneous sample of cross-sections, possibly over some fixed time periods. This procedure simultaneously pools or groups cross-sections while estimating a separate negative binomial regression model for each group. An E-M algorithm is described within a maximum likelihood framework to estimate the group proportions, the group-specific regression coefficients, and the degree of overdispersion in event rates within each derived group. The proposed procedure is illustrated with count data entailing nonnegative integer counts of purchases (events) for a frequently bought consumer good.

[1]  W. DeSarbo,et al.  An Empirical Pooling Approach for Estimating Marketing Mix Elasticities with PIMS Data , 1993 .

[2]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[3]  Michel Wedel,et al.  A Latent Class Poisson Regression Model for Heterogeneous Count Data , 1993 .

[4]  A. Cameron,et al.  Regression-based tests for overdispersion in the Poisson model☆ , 1990 .

[5]  Paul D. Berger,et al.  Direct Marketing Management , 1989 .

[6]  D. Dhavale Computational Approaches to Estimating Negative Binomial Parameters from Count Data , 1989 .

[7]  L. Moore,et al.  Approximate one-sided tolerance bounds on the number of failures using Poisson regression , 1988 .

[8]  David C. Schmittlein,et al.  Generalizing the NBD Model for Customer Purchases: What Are the Implications and Is It Worth the Effort? , 1988 .

[9]  J. Lawless Negative binomial and mixed Poisson regression , 1987 .

[10]  J. Lawless Regression Methods for Poisson Process Data , 1987 .

[11]  Alfred Taudes,et al.  Stochastic models of consumer behaviour , 1987 .

[12]  W. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[13]  J. Mullahy Specification and testing of some modified count data models , 1986 .

[14]  A. F. Smith,et al.  Statistical analysis of finite mixture distributions , 1986 .

[15]  A. Taudes,et al.  A Multivariate Polya Model of Brand Choice and Purchase Incidence , 1986 .

[16]  J. Twomey Establishment Migration: An Analytical Framework , 1986 .

[17]  A. Cameron,et al.  Econometric models based on count data. Comparisons and applications of some estimators and tests , 1986 .

[18]  R. Flowerdew,et al.  Analysing geographic variations in mortality using Poisson regression: the example of ischaemic heart disease in England and Wales 1969-1973. , 1986, Social science & medicine.

[19]  David C. Schmittlein,et al.  Technical Note---Why Does the NBD Model Work? Robustness in Representing Product Purchases, Brand Purchases and Imperfectly Recorded Purchases , 1985 .

[20]  H. Bozdogan,et al.  Multi-sample cluster analysis using Akaike's Information Criterion , 1984 .

[21]  Z. Griliches,et al.  Econometric Models for Count Data with an Application to the Patents-R&D Relationship , 1984 .

[22]  C. Gourieroux,et al.  Pseudo Maximum Likelihood Methods: Applications to Poisson Models , 1984 .

[23]  P. Schmidt,et al.  Limited-Dependent and Qualitative Variables in Econometrics. , 1984 .

[24]  R. A. Boyles On the Convergence of the EM Algorithm , 1983 .

[25]  David R. Cox,et al.  Some remarks on overdispersion , 1983 .

[26]  New York Dover,et al.  ON THE CONVERGENCE PROPERTIES OF THE EM ALGORITHM , 1983 .

[27]  Lee J. Bain,et al.  The Negative Binomial Process with Applications to Reliability , 1982 .

[28]  Vijay Mahajan,et al.  An Approach to Normative Segmentation , 1978 .

[29]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[30]  Satish Chandra,et al.  On the Mixtures of Probability Distributions , 1977 .

[31]  J. Hartigan Clustering Algorithms , 1975 .

[32]  H. Akaike A new look at the statistical model identification , 1974 .

[33]  S. Haberman,et al.  The analysis of frequency data , 1974 .

[34]  Edward L. Frome,et al.  Regression Analysis of Poisson-Distributed Data , 1973 .

[35]  S. Yakowitz,et al.  On the Identifiability of Finite Mixtures , 1968 .

[36]  H. Teicher Identifiability of Finite Mixtures , 1963 .

[37]  Dale W. Jorgenson,et al.  Multiple Regression Analysis of a Poisson Process , 1961 .

[38]  A. Ehrenberg The Pattern of Consumer Purchases , 1959 .

[39]  F. J. Anscombe,et al.  Sampling theory of the negative binomial and logarithmic series distributions. , 1950, Biometrika.

[40]  M. Greenwood,et al.  An Inquiry into the Nature of Frequency Distributions Representative of Multiple Happenings with Particular Reference to the Occurrence of Multiple Attacks of Disease or of Repeated Accidents , 1920 .