Comparing plasma reduction and thermal hydrogenation in oxygen deficient TiO2-x nanotubes for photoelectrochemical H2 production

[1]  S. Pour-Ali,et al.  Enhanced photoelectrochemical water splitting via hydrogenated TiO2 nanotubes modified with Cu/CuO species , 2024, Journal of Photochemistry and Photobiology A: Chemistry.

[2]  H. Abdizadeh,et al.  Photoelectrochemical water splitting based on chalcopyrite semiconductors: A review , 2024, International Journal of Hydrogen Energy.

[3]  Obaid F. Aldosari,et al.  Unlocking the potential of TiO2-based photocatalysts for green hydrogen energy through water-splitting: Recent advances, future perspectives and techno feasibility assessment , 2024, International Journal of Hydrogen Energy.

[4]  Pallab Bhattacharya,et al.  Tailoring of Visible to Near-Infrared Active 2D MXene with Defect-Enriched Titania-Based Heterojunction Photocatalyst for Green H2 Generation. , 2024, ACS applied materials & interfaces.

[5]  C. Ramanan,et al.  Ultrafast Surface-Specific Spectroscopy of Water at a Photoexcited TiO2 Model Water-Splitting Photocatalyst. , 2023, Angewandte Chemie.

[6]  Zhe Huang,et al.  Insights into the pathways, intermediates, influence factors and toxicological properties in the degradation of tetracycline by TiO2-based photocatalysts , 2023, Journal of Environmental Chemical Engineering.

[7]  A. Fattah‐alhosseini,et al.  Tailoring surface defects in Plasma Electrolytic Oxidation (PEO) treated 2-D black TiO2: Post-treatment role, and intensification by peroxymonosulfate activation in visible light-driven photocatalysis , 2023, Applied Catalysis B: Environmental.

[8]  Zhipan Wen,et al.  Integrated Ni(OH)2-TiO2-Cu2O Hybrids with a Synergic Impact of the p–n Heterojunction/Cocatalyst for Enhanced Photocatalytic Hydrogen Production , 2023, Industrial & Engineering Chemistry Research.

[9]  Zhixun Zhang,et al.  From 0D to 3D nanomaterial-based composite membranes for CO2 capture: recent advances and perspectives , 2023, Journal of Environmental Chemical Engineering.

[10]  Mengjie Lu,et al.  Co-implantation of oxygen vacancy and well-dispersed Cu cocatalyst into TiO2 nanoparticles for promoting solar-to-hydrogen evolution , 2022, International Journal of Hydrogen Energy.

[11]  S. Ray,et al.  Temperature-Dependent Electronic Structure of TiO2 Thin Film Deposited by the Radio Frequency Reactive Magnetron Sputtering Technique: X ray Absorption Near-Edge Structure and X ray Photoelectron Spectroscopy , 2022, The Journal of Physical Chemistry C.

[12]  E. Restrepo‐Parra,et al.  Study of the incorporation of S in TiO2/SO42– coatings produced by PEO process through XPS and DFT , 2022, Applied Surface Science.

[13]  Hang Sun,et al.  Bi@H-TiO2/B-C3N4 heterostructure for enhanced photocatalytic hydrogen generation activity under visible light , 2022, Journal of Industrial and Engineering Chemistry.

[14]  Jin-Tao Ren,et al.  Precisely modifying Co2P/black TiO2 S-scheme heterojunction by in situ formed P and C dopants for enhanced photocatalytic H2 production , 2022, Applied Catalysis B: Environmental.

[15]  M. Killian,et al.  One-dimensional suboxide TiO2 nanotubes for electrodics applications , 2022, Electrochemistry Communications.

[16]  Hui Song,et al.  Solar-Driven Hydrogen Production: Recent Advances, Challenges, and Future Perspectives , 2022, ACS Energy Letters.

[17]  J. Chase View from the Solar Industry: We Don’t Need COP26 to Shine, But What Should We Worry About? , 2022, Joule.

[18]  Huabin Zhang,et al.  Toward solar-driven carbon recycling , 2022, Joule.

[19]  Zhao-hui Yang,et al.  Magnetic heterojunction of oxygen-deficient Ti3+-TiO2 and Ar-Fe2O3 derived from metal-organic frameworks for efficient peroxydisulfate (PDS) photo-activation , 2021 .

[20]  Liping Yu,et al.  visible light illumination assistant Li-O2 battery based on an oxygen vacancy doped TiO2 catalyst , 2021, Electrochimica Acta.

[21]  Xuguang Liu,et al.  A Promoted Photocatalysis System Trade-off between Thermodynamic and Kinetic via Hierarchical Distribution Dual-Defects for Efficient H2 Evolution , 2021, Chemical Engineering Journal.

[22]  Deli Jiang,et al.  Photocatalytic reduction of CO2 into CH4 over Ru-doped TiO2: Synergy of Ru and oxygen vacancies. , 2021, Journal of colloid and interface science.

[23]  Xuguang Liu,et al.  Self-Doping Surface Oxygen Vacancy-Induced Lattice Strains for Enhancing Visible Light-Driven Photocatalytic H2 Evolution over Black TiO2. , 2021, ACS applied materials & interfaces.

[24]  P. Schmuki,et al.  Intrinsically Ru-Doped Suboxide TiO2 Nanotubes for Enhanced Photoelectrocatalytic H2 Generation , 2021 .

[25]  S. Dillon,et al.  Construction of CdSe polymorphic junctions with coherent interface for enhanced photoelectrocatalytic hydrogen generation , 2021 .

[26]  Yiyang Li,et al.  Characterisation of oxygen defects and nitrogen impurities in TiO2 photocatalysts using variable-temperature X-ray powder diffraction , 2021, Nature Communications.

[27]  Nageh K. Allam,et al.  Comparison between hydrogen production via H2S and H2O splitting on transition metal-doped TiO2 (101) surfaces as potential photoelectrodes , 2020 .

[28]  S. Parikh,et al.  Black TiO2: A review of its properties and conflicting trends , 2020 .

[29]  P. Schmuki,et al.  Alkali Metal Cation Incorporation in Conductive TiO 2 Nanoflakes with Improved Photoelectrochemical H 2 Generation , 2020 .

[30]  O. K. Orhan,et al.  First-principles Hubbard U and Hund's J corrected approximate density functional theory predicts an accurate fundamental gap in rutile and anatase TiO2 , 2020, Physical Review B.

[31]  R. Zbořil,et al.  Influence of Ti3+ defect-type on heterogeneous photocatalytic H2 evolution activity of TiO2 , 2020, Journal of Materials Chemistry A.

[32]  Hongtao Yu,et al.  Constructing desired interfacial energy band alignment of Z-scheme TiO2-Pd-Cu2O hybrid by controlling the contact facet for improved photocatalytic performance , 2019, Applied Catalysis B: Environmental.

[33]  A. Gulino,et al.  Hydrogenated black-TiOx: A facile and scalable synthesis for environmental water purification , 2019, Catalysis Today.

[34]  M. Yousefi,et al.  Two-dimensional materials in semiconductor photoelectrocatalytic systems for water splitting , 2019, Energy & Environmental Science.

[35]  A. Naldoni,et al.  Photocatalysis with Reduced TiO2: From Black TiO2 to Cocatalyst-Free Hydrogen Production , 2018, ACS catalysis.

[36]  Jun Li,et al.  Modification of porphyrin/dipyridine metal complexes on the surface of TiO_2 nanotubes with enhanced photocatalytic activity for photoreduction of CO_2 into methanol , 2018, Journal of Materials Research.

[37]  S. C. George,et al.  Nanomaterials for photoelectrochemical water splitting - review , 2018 .

[38]  R. Zbořil,et al.  Semimetallic core-shell TiO2 nanotubes as a high conductivity scaffold and use in efficient 3D-RuO2 supercapacitors , 2017 .

[39]  E. Comini,et al.  Pure and Highly Nb-Doped Titanium Dioxide Nanotubular Arrays: Characterization of Local Surface Properties , 2017, Nanomaterials.

[40]  Li-ping Zhu,et al.  Effective Formation of Oxygen Vacancies in Black TiO2 Nanostructures with Efficient solar-driven water splitting , 2017 .

[41]  P. Schmuki,et al.  Photoelectrochemical H2 Generation from Suboxide TiO2 Nanotubes: Visible-Light Absorption versus Conductivity. , 2017, Chemistry.

[42]  Lei Wang,et al.  Ti3+ Self-Doped Black TiO2 Nanotubes with Mesoporous Nanosheet Architecture as Efficient Solar-Driven Hydrogen Evolution Photocatalysts , 2017 .

[43]  E. Selli,et al.  TiO2-based materials for photocatalytic hydrogen production , 2017, Titanium Dioxide (Tio₂) and Its Applications.

[44]  A. Moshfegh,et al.  Recent progress on doped ZnO nanostructures for visible-light photocatalysis , 2016 .

[45]  K. Berland,et al.  Spin Signature of Nonlocal Correlation Binding in Metal-Organic Frameworks. , 2015, Physical review letters.

[46]  Jiwei Zhang,et al.  Effect of surface/bulk oxygen vacancies on the structure and electrochemical performance of TiO2 nanoparticles , 2015 .

[47]  Jiangtian Li,et al.  Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review , 2015 .

[48]  R. R. Mohanta,et al.  Ion beam induced chemical and morphological changes in TiO2 films deposited on Si(1 1 1) surface by pulsed laser deposition , 2015 .

[49]  Chongyin Yang,et al.  Black TiO2 nanotube arrays for high-efficiency photoelectrochemical water-splitting , 2014 .

[50]  D. Hamann Optimized norm-conserving Vanderbilt pseudopotentials , 2013, 1306.4707.

[51]  L. Kavan,et al.  Raman spectra of titanium dioxide (anatase, rutile) with identified oxygen isotopes (16, 17, 18). , 2012, Physical chemistry chemical physics : PCCP.

[52]  F. Giustino,et al.  GW quasiparticle bandgaps of anatase TiO2 starting from DFT + U , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[53]  F. Tian,et al.  RAMAN SPECTROSCOPY: A NEW APPROACH TO MEASURE THE PERCENTAGE OF ANATASE TIO2 EXPOSED (001) FACETS , 2012 .

[54]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[55]  M. E. A. Dompablo,et al.  DFT+U calculations of crystal lattice, electronic structure, and phase stability under pressure of TiO2 polymorphs. , 2011, The Journal of chemical physics.

[56]  Xue-qing Gong,et al.  Anatase TiO2 crystals with exposed high-index facets. , 2011, Angewandte Chemie.

[57]  Patrik Schmuki,et al.  TiO2 nanotubes: synthesis and applications. , 2011, Angewandte Chemie.

[58]  Xiaobo Chen,et al.  Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals , 2011, Science.

[59]  Nathan T. Hahn,et al.  Reactive ballistic deposition of alpha-Fe2O3 thin films for photoelectrochemical water oxidation. , 2010, ACS nano.

[60]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[61]  G. Mattioli,et al.  Ab initio study of the electronic states induced by oxygen vacancies in rutile and anatase TiO 2 , 2008 .

[62]  V. K. Mahajan,et al.  Self-organized TiO2 nanotubular arrays for photoelectrochemical hydrogen generation: effect of crystallization and defect structures , 2008 .

[63]  P. Schmuki,et al.  Interfacial properties of self-organized TiO2 nanotubes studied by impedance spectroscopy , 2007 .

[64]  P. Hyldgaard,et al.  Van der Waals density functional: Self-consistent potential and the nature of the van der Waals bond , 2007, cond-mat/0703442.

[65]  Michael Grätzel,et al.  New Benchmark for Water Photooxidation by Nanostructured α-Fe2O3 Films , 2006 .

[66]  S. Pratsinis,et al.  Raman spectroscopy characterization of titania nanoparticles produced by flame pyrolysis: The influence of size and stoichiometry , 2005 .

[67]  Stefano de Gironcoli,et al.  Linear response approach to the calculation of the effective interaction parameters in the LDA + U method , 2004, cond-mat/0405160.

[68]  M. Dion,et al.  van der Waals density functional for general geometries. , 2004, Physical review letters.

[69]  S. Saxena,et al.  Raman spectroscopic study on pressure-induced amorphization in nanocrystalline anatase (TiO 2 ) , 2001 .

[70]  L. Bengtsson,et al.  Dipole correction for surface supercell calculations , 1999 .

[71]  G. Boschloo,et al.  Photoelectrochemical Study of Thin Anatase TiO2 Films Prepared by Metallorganic Chemical Vapor Deposition , 1997 .

[72]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[73]  R. Siegel,et al.  Calibration of the Raman spectrum to the oxygen stoichiometry of nanophase TiO2 , 1990 .

[74]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[75]  A. L. Patterson The Scherrer Formula for X-Ray Particle Size Determination , 1939 .

[76]  Jili Zheng,et al.  Green supercapacitor assisted photocatalytic fuel cell system for sustainable hydrogen production , 2021 .

[77]  Andreas Poullikkas,et al.  A comparative overview of hydrogen production processes , 2017 .

[78]  C. Peden,et al.  Insights into Photoexcited Electron Scavenging Processes on TiO2 Obtained from Studies of the Reaction of O2 with OH Groups Adsorbed at Electronic Defects on TiO2 (110) , 2003 .

[79]  Michael Grätzel,et al.  Photoelectrochemical cells , 2001, Nature.