Progress in the construction and testing of the Tianlai radio interferometers

The Tianlai Pathfinder is designed to demonstrate the feasibility of using wide field of view radio interferometers to map the density of neutral hydrogen in the Universe after the Epoch of Reionizaton. This approach, called 21 cm intensity-mapping, promises an inexpensive means for surveying the large-scale structure of the cosmos. The Tianlai Pathfinnder presently consists of an array of three, 15 m × 40 m cylinder telescopes and an array of sixteen, 6 m diameter dish antennas located in a radio-quiet part of western China. The two types of arrays were chosen to determine the advantages and disadvantages of each approach. The primary goal of the Pathfinder is to make 3D maps by surveying neutral hydrogen over large areas of the sky in two different redshift ranges: first at 1.03 > z > 0.78 (700 - 800 MHz) and later at 0.21 > z > 0.12 (1170-1270 MHz). The most significant challenge to 21 cm intensity-mapping is the removal of strong foreground radiation that dwarfs the cosmological signal. It requires exquisite knowledge of the instrumental response, i.e. calibration. In this paper we provide an overview of the status of the Pathfinder and discuss the details of some of the analysis that we have carried out to measure the beam function of both arrays. We compare electromagnetic simulations of the arrays to measurements, discuss measurements of the gain and phase stability of the instrument, and provide a brief overview of the data processing pipeline.

[1]  Kevin Bandura Pathfinder for a Neutral Hydrogen Dark Energy Survey , 2011 .

[2]  M A Zwaan,et al.  Hydrogen 21-Centimeter Emission from a Galaxy at Cosmological Distance , 2001, Science.

[3]  H. C. Chiang,et al.  HIRAX: a probe of dark energy and radio transients , 2016, Astronomical Telescopes + Instrumentation.

[4]  C. Magneville,et al.  Sky reconstruction from transit visibilities: PAON-4 and Tianlai Dish Array , 2016, 1606.03090.

[5]  Tarun Souradeep,et al.  SCoPE: an efficient method of Cosmological Parameter Estimation , 2014, 1403.1271.

[6]  Graeme Smecher,et al.  Canadian Hydrogen Intensity Mapping Experiment (CHIME) pathfinder , 2014, Astronomical Telescopes and Instrumentation.

[7]  Miguel F. Morales,et al.  HI Structure Observations of Reionization and Dark Energy , 2008, 0810.5136.

[8]  C. Magneville,et al.  Sky reconstruction for the Tianlai cylinder array , 2016, 1606.03830.

[9]  Kevin Bandura,et al.  An intensity map of hydrogen 21-cm emission at redshift z ≈ 0.8 , 2010, Nature.

[10]  Tarun Souradeep,et al.  Revised cosmological parameters after BICEP 2 and BOSS , 2015 .

[11]  David R. DeBoer,et al.  THE HYDROGEN EPOCH OF REIONIZATION ARRAY DISH. I. BEAM PATTERN MEASUREMENTS AND SCIENCE IMPLICATIONS , 2016, 1602.03887.

[12]  Parker Troischt,et al.  The Arecibo Legacy Fast ALFA Survey , 2010 .

[13]  Scott Dodelson,et al.  21 cm Intensity Mapping , 2009 .

[14]  C. Dickinson,et al.  H i intensity mapping: a single dish approach , 2012, 1209.0343.

[15]  Philip Bull,et al.  LATE-TIME COSMOLOGY WITH 21 cm INTENSITY MAPPING EXPERIMENTS , 2014, 1405.1452.

[16]  Kevin Bandura,et al.  The Hubble Sphere Hydrogen Survey , 2006, astro-ph/0606104.

[17]  Noah Brosch,et al.  An optical-UV-IR survey of the North Celestial Cap – I. The catalogue , 2014, 1406.4153.

[18]  Xuelei Chen,et al.  FORECASTS ON THE DARK ENERGY AND PRIMORDIAL NON-GAUSSIANITY OBSERVATIONS WITH THE TIANLAI CYLINDER ARRAY , 2014, 1410.7794.

[19]  A. Stebbins,et al.  Simulation and Testing of a Linear Array of Modified Four-Square Feed Antennas for the Tianlai Cylindrical Radio Telescope , 2017, 1705.04435.

[20]  Tarun Souradeep,et al.  ISW effect as probe of features in the expansion history of the Universe , 2013, 1305.4530.

[21]  E. R. Switzer,et al.  MEASUREMENT OF 21 cm BRIGHTNESS FLUCTUATIONS AT z ∼ 0.8 IN CROSS-CORRELATION , 2012, 1208.0331.

[22]  Martha P. Haynes,et al.  THE ARECIBO LEGACY FAST ALFA SURVEY. X. THE H i MASS FUNCTION AND FROM THE 40% ALFALFA SURVEY , 2010, 1008.5107.

[23]  A. R. Whitney,et al.  THE IMPORTANCE OF WIDE-FIELD FOREGROUND REMOVAL FOR 21 cm COSMOLOGY: A DEMONSTRATION WITH EARLY MWA EPOCH OF REIONIZATION OBSERVATIONS , 2016, 1601.06177.

[24]  F. Abdalla,et al.  Probing dark energy with baryonic oscillations and future radio surveys of neutral hydrogen , 2004, astro-ph/0411342.

[25]  J. Schaye,et al.  Initial deep LOFAR observations of epoch of reionization windows. I. The north celestial pole , 2013, 1301.1630.

[26]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[27]  Ue-Li Pen,et al.  Baryon acoustic oscillation intensity mapping of dark energy. , 2007, Physical review letters.

[28]  Tarun Souradeep,et al.  Suppressing CMB low multipoles with ISW effect , 2013, 1312.0025.

[29]  Matias Zaldarriaga,et al.  How accurately can 21cm tomography constrain cosmology , 2008, 0802.1710.

[30]  Scott Dodelson,et al.  A GROUND-BASED 21 cm BARYON ACOUSTIC OSCILLATION SURVEY , 2009, 0910.5007.

[31]  J. M. Martin,et al.  21 cm observation of large-scale structures at z ~ 1 - Instrument sensitivity and foreground subtraction , 2011, 1108.1474.

[32]  Xuelei Chen,et al.  THE TIANLAI PROJECT: A 21CM COSMOLOGY EXPERIMENT , 2012, 1212.6278.

[33]  K. W. M ASUI,et al.  INTERPRETING THE UNRESOLVED INTENSITY OF COSMOLOGICALLY REDSHIFTED LINE RADIATION , 2016 .

[34]  David R. DeBoer,et al.  The HERA Dish II: Electromagnetic Simulations and Science Implications , 2016 .

[35]  E. R. Switzer,et al.  Determination of z ∼ 0.8 neutral hydrogen fluctuations using the 21 cm intensity mapping autocorrelation , 2013, 1304.3712.

[36]  The University of Manchester,et al.  BINGO - A novel method to detect BAOs using a total-power radio telescope , 2014, 1405.7936.

[37]  David F. Moore,et al.  PAPER-64 CONSTRAINTS ON REIONIZATION: THE 21 cm POWER SPECTRUM AT z = 8.4 , 2015, 1502.06016.