Cell patterning in the Drosophila segment: engrailed and wingless antigen distributions in segment polarity mutant embryos.

By a complex and little understood mechanism, segment polarity genes control patterning in each segment of the Drosophila embryo. During this process, cell to cell communication plays a pivotal role and is under direct control of the products of segment polarity genes. Many of the cloned segment polarity genes have been found to be highly conserved in evolution, providing a model system for cellular interactions in other organisms. In Drosophila, two of these genes, engrailed and wingless, are expressed on either side of the parasegment border, wingless encodes a secreted molecule and engrailed a nuclear protein with a homeobox. Maintenance of engrailed expression is dependent on wingless and vice versa. To investigate the role of other segment polarity genes in the mutual control between these two genes, we have examined wingless and engrailed protein distribution in embryos mutant for each of the segment polarity genes.In embryos mutant for armadillo, dishevelled and porcupine, the changes in engrailed expression are identical to those in wingless mutant embryos, suggesting that their gene products act in the wingless pathway. In embryos mutant for hedgehog, fused, cubitus interruptus Dominant and gooseberry, expression of engrailed is affected to varying degrees. However wingless expression in the latter group decays in a similar way earlier than engrailed expression, indicating that these gene products might function in the maintenance of wingless expression. Using double mutant embryos, epistatic relationships between some segment polarity genes have been established. We present a model showing a current view of segment polarity gene interactions.