The future of biotechnology for gold exploration and processing

[1]  Eoin L Brodie,et al.  Bacterial communities associated with a mineral weathering profile at a sulphidic mine tailings dump in arid Western Australia. , 2012, FEMS microbiology ecology.

[2]  Joël Brugger,et al.  Replacement of pyrrhotite by pyrite and marcasite under hydrothermal conditions up to 220 °C: An experimental study of reaction textures and mechanisms , 2011 .

[3]  F. C. Soncini,et al.  Selective detection of gold using genetically engineered bacterial reporters , 2011, Biotechnology and bioengineering.

[4]  A. Pring,et al.  Focussed ion beam–transmission electron microscopy applications in ore mineralogy: Bridging micro- and nanoscale observations , 2011 .

[5]  J. Brugger,et al.  Bi-melt formation and gold scavenging from hydrothermal fluids: An experimental study , 2011 .

[6]  C. Dunn Biogeochemistry in Mineral Exploration , 2011 .

[7]  W. Skinner,et al.  An experimental study of the mechanism of the replacement of magnetite by pyrite up to 300 °C , 2010 .

[8]  R. Hough,et al.  Nanoparticle factories: Biofilms hold the key to gold dispersion and nugget formation , 2010 .

[9]  Erkan Topal,et al.  An overview of global gold market and gold price forecasting , 2010 .

[10]  C. Balomajumder,et al.  Enzymatic mechanism and biochemistry for cyanide degradation: a review. , 2010, Journal of hazardous materials.

[11]  G. Gadd Metals, minerals and microbes: geomicrobiology and bioremediation. , 2010, Microbiology.

[12]  N. Reid,et al.  Biogeochemical sampling for mineral exploration in arid terrains: Tanami Gold Province, Australia , 2010 .

[13]  Yung Ngothai,et al.  Probing ore deposits formation: New insights and challenges from synchrotron and neutron studies , 2010 .

[14]  Stefan Vogt,et al.  Mechanisms of gold biomineralization in the bacterium Cupriavidus metallidurans , 2009, Proceedings of the National Academy of Sciences.

[15]  G. Southam,et al.  The Biogeochemistry of Gold , 2009 .

[16]  S. Percival,et al.  Prevalence of silver resistance genes in bacteria isolated from human and horse wounds. , 2009, Veterinary microbiology.

[17]  J. Shapter,et al.  Effect of the cyanide-producing bacterium Chromobacterium violaceum on ultraflat Au surfaces , 2009 .

[18]  W. Skinner,et al.  Invisible gold in arsenian pyrite and arsenopyrite from a multistage Archaean gold deposit: Sunrise Dam, Eastern Goldfields Province, Western Australia , 2009 .

[19]  N. Cook,et al.  Textural control on gold distribution in As-free pyrite from the Dongping, Huangtuliang and Hougou gold deposits, North China Craton (Hebei Province, China) , 2009 .

[20]  J. Brugger,et al.  A spectrophotometric study of aqueous Au(III) halide–hydroxide complexes at 25–80 °C , 2009 .

[21]  M. Mergeay,et al.  New mobile genetic elements in Cupriavidus metallidurans CH34, their possible roles and occurrence in other bacteria , 2009, Antonie van Leeuwenhoek.

[22]  Rajesh Roshan Dash,et al.  Cyanide in industrial wastewaters and its removal: a review on biotreatment. , 2009, Journal of hazardous materials.

[23]  A. Putnis,et al.  Mechanism and kinetics of pseudomorphic mineral replacement reactions: A case study of the replacement of pentlandite by violarite , 2009 .

[24]  C. L. Brierley,et al.  How will biomining be applied in future , 2008 .

[25]  John H T Luong,et al.  Biosensor technology: technology push versus market pull. , 2008, Biotechnology advances.

[26]  P. Visca,et al.  Enzymatic Detoxification of Cyanide: Clues from Pseudomonas aeruginosa Rhodanese , 2008, Journal of Molecular Microbiology and Biotechnology.

[27]  F. Reith,et al.  Assessment of Bacterial Communities in Auriferous and Non-Auriferous Soils Using Genetic and Functional Fingerprinting , 2008 .

[28]  Joseph Wang,et al.  Electrochemical Glucose Biosensors , 2008 .

[29]  D. Craw,et al.  The geomicrobiology of gold , 2007, The ISME Journal.

[30]  J. S. Angle,et al.  Heavy metal resistance and genotypic analysis of metal resistance genes in gram-positive and gram-negative bacteria present in Ni-rich serpentine soil and in the rhizosphere of Alyssum murale. , 2007, Chemosphere.

[31]  F. C. Soncini,et al.  Bacterial sensing of and resistance to gold salts , 2007, Molecular microbiology.

[32]  Bin Zhao,et al.  Key genes involved in heavy-metal resistance in Pseudomonas putida CD2. , 2007, FEMS microbiology letters.

[33]  F. Reith,et al.  Biomineralization of Gold: Biofilms on Bacterioform Gold , 2006, Science.

[34]  F. Reith,et al.  Effect of resident microbiota on the solubilization of gold in soil from the Tomakin Park Gold Mine, New South Wales, Australia , 2006 .

[35]  P. Franzmann,et al.  Effects of temperature on the rates of iron and sulfur oxidation by selected bioleaching Bacteria and Archaea: Application of the Ratkowsky equation , 2005 .

[36]  G. Southam,et al.  The effect of thiosulfate-oxidizing bacteria on the stability of the gold-thiosulfate complex , 2005 .

[37]  R. Ewing,et al.  “Invisible„ gold revealed: Direct imaging of gold nanoparticles in a Carlin-type deposit , 2004 .

[38]  S. Ebbs,et al.  Biological degradation of cyanide compounds. , 2004, Current opinion in biotechnology.

[39]  C. L. Brierley,et al.  Bioleaching review part B: , 2003, Applied Microbiology and Biotechnology.

[40]  A. Mondragón,et al.  Molecular Basis of Metal-Ion Selectivity and Zeptomolar Sensitivity by CueR , 2003, Science.

[41]  A. Akcil,et al.  Microbial destruction of cyanide wastes in gold mining: process review , 2003, Biotechnology Letters.

[42]  M Mergeay,et al.  Classification of metal-resistant bacteria from industrial biotopes as Ralstonia campinensis sp. nov., Ralstonia metallidurans sp. nov. and Ralstonia basilensis Steinle et al. 1998 emend. , 2001, International journal of systematic and evolutionary microbiology.

[43]  T. R. Clark,et al.  Biogenic production of cyanide and its application to gold recovery , 2001, Journal of Industrial Microbiology and Biotechnology.

[44]  Dieter Haas,et al.  Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis , 2000, Archives of Microbiology.

[45]  J. D. Desai,et al.  Microbial Degradation of Cyanides and Its Commercial Applications , 1999 .

[46]  M. Madigan,et al.  Brock Biology of Microorganisms , 1996 .

[47]  G. Olson Microbial oxidation of gold ores and gold bioleaching , 1994 .

[48]  Richard A Williams,et al.  Processing problematic ores , 1993 .

[49]  D. C. Harris The Mineralogy of gold and its relevance to gold recoveries , 1990 .

[50]  N. Cook,et al.  Concentrations of invisible gold in the common sulfides , 1990 .

[51]  M. Mergeay,et al.  Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals , 1985, Journal of bacteriology.

[52]  Vining Drj Migration between the core and the periphery , 1982 .

[53]  M. Mergeay,et al.  Extrachromosomal inheritance controlling resistance to cadmium, cobalt, copper and zinc ions: evidence from curing in a Pseudomonas [proceedings]. , 1978, Archives internationales de physiologie et de biochimie.

[54]  Ryan Noble,et al.  Assessing microbiological surface expression over an overburden-covered VMS deposit , 2012 .

[55]  R. Sani,et al.  Molecular Techniques to Assess Microbial Community Structure, Function, and Dynamics in the Environment , 2011 .

[56]  B. Govaerts,et al.  Microbial Community Structure and Diversity as Indicators for Evaluating Soil Quality , 2010 .

[57]  K. Riedel,et al.  Environmental Proteomics: Studying Structure and Function of Microbial Communities , 2010 .

[58]  R. García-Ruiz,et al.  Utilizing Microbial Community Structure and Function to Evaluate the Health of Heavy Metal Polluted Soils , 2010 .

[59]  M. Mergeay,et al.  Megaplasmids in Cupriavidus Genus and Metal Resistance , 2009 .

[60]  A. Putnis Mineral Replacement Reactions , 2009 .

[61]  P. Franzmann,et al.  Growth and activity of pure and mixed bioleaching strains on low grade chalcopyrite ore , 2008 .

[62]  P. Younger,et al.  Passive treatment for the removal of residual cyanide in drainage from closed gold mine tailing ponds , 2008 .

[63]  Qing Hu,et al.  Bacterial diversity in soils around a lead and zinc mine. , 2007, Journal of environmental sciences.

[64]  F. Reith,et al.  EXPLORATION GEOMICROBIOLOGY - THE NEW FRONTIER , 2006 .

[65]  M. M. Botz,et al.  Cyanide and society: a critical review , 2004 .

[66]  G. Olson,et al.  Bioleaching review part B: progress in bioleaching: applications of microbial processes by the minerals industries. , 2003, Applied microbiology and biotechnology.

[67]  D. Rawlings,et al.  Biomineralization of metal-containing ores and concentrates. , 2003, Trends in biotechnology.

[68]  H. Tributsch,et al.  Reasons why 'Leptospirillum'-like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores. , 1999, Microbiology.

[69]  S. Silver Bacterial resistances to toxic metal ions--a review. , 1996, Gene.

[70]  C. Gasparrini,et al.  GOLD: MINERALOGY AND METAL EXTRACTION , 1983 .

[71]  M. Silver,et al.  Ore leaching by bacteria. , 1980, Annual review of microbiology.