Robotic Online Path Planning on Point Cloud

This paper deals with the path-planning problem for mobile wheeled- or tracked-robot which drive in 2.5-D environments, where the traversable surface is usually considered as a 2-D-manifold embedded in a 3-D ambient space. Specially, we aim at solving the 2.5-D navigation problem using raw point cloud as input. The proposed method is independent of traditional surface parametrization or reconstruction methods, such as a meshing process, which generally has high-computational complexity. Instead, we utilize the output of 3-D tensor voting framework on the raw point clouds. The computation of tensor voting is accelerated by optimized implementation on graphics computation unit. Based on the tensor voting results, a novel local Riemannian metric is defined using the saliency components, which helps the modeling of the latent traversable surface. Using the proposed metric, we prove that the geodesic in the 3-D tensor space leads to rational path-planning results by experiments. Compared to traditional methods, the results reveal the advantages of the proposed method in terms of smoothing the robot maneuver while considering the minimum travel distance.

[1]  Roland Siegwart,et al.  Challenging data sets for point cloud registration algorithms , 2012, Int. J. Robotics Res..

[2]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[3]  Gérard G. Medioni,et al.  Tensor Voting Accelerated by Graphics Processing Units (GPU) , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[4]  J. Karl Hedrick,et al.  Autonomous UAV path planning and estimation , 2009, IEEE Robotics & Automation Magazine.

[5]  Mukund Balasubramanian,et al.  The Isomap Algorithm and Topological Stability , 2002, Science.

[6]  Maxim Likhachev,et al.  D*lite , 2002, AAAI/IAAI.

[7]  Keum Shik Hong,et al.  A Path-Planning Algorithm Using Vector Potential Functions in Triangular Regions , 2013, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[8]  Jing Li,et al.  Statistical atlas based registration and planning for ablating bone tumors in minimally invasive interventions , 2012, 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO).

[9]  Hanns-F. Schuster SEGMENTATION OF LIDAR DATA USING THE TENSOR VOTING FRAMEWORK , 2004 .

[10]  Sebastian Thrun,et al.  FastSLAM: a factored solution to the simultaneous localization and mapping problem , 2002, AAAI/IAAI.

[11]  Shuzhi Sam Ge,et al.  Coverage planning in computer-assisted ablation based on Genetic Algorithm , 2014, Comput. Biol. Medicine.

[12]  Roland Siegwart,et al.  Regional topological segmentation based on mutual information graphs , 2011, 2011 IEEE International Conference on Robotics and Automation.

[13]  Vikram Kapila,et al.  Optimal path planning for unmanned air vehicles with kinematic and tactical constraints , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[14]  Steven M. LaValle,et al.  RRT-connect: An efficient approach to single-query path planning , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[15]  Beno Benhabib,et al.  Target-Motion Prediction for Robotic Search and Rescue in Wilderness Environments , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[16]  S.X. Yang,et al.  An efficient dynamic system for real-time robot-path planning , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[17]  Christian Teutsch,et al.  A parallel point cloud clustering algorithm for subset segmentation and outlier detection , 2011, Optical Metrology.

[18]  Lujia Wang,et al.  An auction-based resource allocation strategy for joint-surveillance using networked multi-robot systems , 2013, 2013 IEEE International Conference on Information and Automation (ICIA).

[19]  R. Siegwart,et al.  Chapter 1 Experience in System Design for Human-Robot Teaming in Urban Search & Rescue ? , 2012 .

[20]  Roland Siegwart,et al.  Incremental topological segmentation for semi-structured environments using discretized GVG , 2015, Auton. Robots.

[21]  Jian Yang,et al.  Comparison of Optimal Solutions to Real-Time Path Planning for a Mobile Vehicle , 2005, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[22]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[23]  Vijay R. Kumar,et al.  Euclidean metrics for motion generation on SE(3) , 2002 .

[24]  Alberto Elfes,et al.  Using occupancy grids for mobile robot perception and navigation , 1989, Computer.

[25]  Alfred M. Bruckstein,et al.  Finding Shortest Paths on Surfaces Using Level Sets Propagation , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  I. Holopainen Riemannian Geometry , 1927, Nature.

[27]  Jingwen Dai,et al.  Touchscreen Everywhere: On Transferring a Normal Planar Surface to a Touch-Sensitive Display , 2014, IEEE Transactions on Cybernetics.

[28]  M. Pietikäinen,et al.  Range Image Segmentation Based on Decomposition of Surface Normals , 2004 .

[29]  Martin Buss,et al.  Comparison of surface normal estimation methods for range sensing applications , 2009, 2009 IEEE International Conference on Robotics and Automation.

[30]  Alan Edelman,et al.  The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[31]  Roland Siegwart,et al.  Tensor-voting-based navigation for robotic inspection of 3D surfaces using lidar point clouds , 2012, Int. J. Robotics Res..

[32]  Roland Siegwart,et al.  A Markov semi-supervised clustering approach and its application in topological map extraction , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[33]  Jean Gallier,et al.  Geometric Methods and Applications: For Computer Science and Engineering , 2000 .

[34]  Roland Siegwart,et al.  Visual Homing From Scale With an Uncalibrated Omnidirectional Camera , 2013, IEEE Transactions on Robotics.

[35]  Yolanda González Cid,et al.  Real-time 3d SLAM with wide-angle vision , 2004 .

[36]  Guillermo Sapiro,et al.  Distance Functions and Geodesics on Submanifolds of Rd and Point Clouds , 2005, SIAM J. Appl. Math..

[37]  Chi-Keung Tang,et al.  Robust estimation of adaptive tensors of curvature by tensor voting , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[38]  Joachim Hertzberg,et al.  6D SLAM—3D mapping outdoor environments , 2007, J. Field Robotics.

[39]  Nam Ik Cho,et al.  Graph cuts using a Riemannian metric induced by tensor voting , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[40]  Wolfram Burgard,et al.  Efficient Sparse Pose Adjustment for 2D mapping , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[41]  Nobuhiko Hata,et al.  Treatment Planning and Image Guidance for Radiofrequency Ablation of Large Tumors , 2014, IEEE Journal of Biomedical and Health Informatics.

[42]  Roland Siegwart,et al.  Information theory based validation for point-cloud segmentation aided by tensor voting , 2013, 2013 IEEE International Conference on Information and Automation (ICIA).

[43]  G. Klein,et al.  Parallel Tracking and Mapping for Small AR Workspaces , 2007, 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality.

[44]  Gérard G. Medioni,et al.  Tensor Voting: A Perceptual Organization Approach to Computer Vision and Machine Learning , 2006, Tensor Voting.

[45]  Sven Behnke,et al.  Real-Time Plane Segmentation Using RGB-D Cameras , 2012, RoboCup.

[46]  Cheng-Kok Koh,et al.  A 3-D-Point-Cloud System for Human-Pose Estimation , 2014, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[47]  Kyu Ho Park,et al.  A fast path planning by path graph optimization , 2003, IEEE Trans. Syst. Man Cybern. Part A.

[48]  Mauro R. Ruggeri,et al.  Approximating Geodesics on Point Set Surfaces , 2006, PBG@SIGGRAPH.

[49]  Kurt Konolige,et al.  The Office Marathon: Robust navigation in an indoor office environment , 2010, 2010 IEEE International Conference on Robotics and Automation.

[50]  Mi-Suen Lee,et al.  A Computational Framework for Segmentation and Grouping , 2000 .

[51]  Vladimir Kolmogorov,et al.  Computing geodesics and minimal surfaces via graph cuts , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[52]  Jian-Bo Su,et al.  Motion Planning and Coordination for Robot Systems Based on Representation Space , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[53]  Roland Siegwart,et al.  3D path planning and execution for search and rescue ground robots , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[54]  Radu Bogdan Rusu,et al.  3D is here: Point Cloud Library (PCL) , 2011, 2011 IEEE International Conference on Robotics and Automation.

[55]  Hugh Durrant-Whyte,et al.  Simultaneous localization and mapping (SLAM): part II , 2006 .

[56]  Sachin Chitta,et al.  MoveIt! [ROS Topics] , 2012, IEEE Robotics Autom. Mag..

[57]  Charles V. Stewart,et al.  Range data analysis by free-space modeling and tensor voting , 2008 .

[58]  Roland Siegwart,et al.  The role of homing in visual topological navigation , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[59]  Wolfram Burgard,et al.  OctoMap : A Probabilistic , Flexible , and Compact 3 D Map Representation for Robotic Systems , 2010 .

[60]  Roland Siegwart,et al.  Topological Mapping and Scene Recognition With Lightweight Color Descriptors for an Omnidirectional Camera , 2014, IEEE Transactions on Robotics.

[61]  M. Meng,et al.  A novel RF-based propagation model with tissue absorption for location of the GI tract , 2010, 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology.

[62]  Dong Sun,et al.  Moving Groups of Microparticles Into Array With a Robot–Tweezers Manipulation System , 2012, IEEE Transactions on Robotics.

[63]  I. Herlin,et al.  4-D Tensor Voting motion segmentation for obstacle detection in autonomous guided vehicle , 2008, 2008 IEEE Intelligent Vehicles Symposium.

[64]  Dieter Fox,et al.  RGB-D Mapping: Using Depth Cameras for Dense 3D Modeling of Indoor Environments , 2010, ISER.

[65]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[66]  Jonghyuk Kim,et al.  Occupancy Mapping and Surface Reconstruction Using Local Gaussian Processes With Kinect Sensors , 2013, IEEE Transactions on Cybernetics.

[67]  Chi-Keung Tang,et al.  Inference of segmented color and texture description by tensor voting , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[68]  Martin Buss,et al.  Realtime segmentation of range data using continuous nearest neighbors , 2009, 2009 IEEE International Conference on Robotics and Automation.

[69]  Wan Kyun Chung,et al.  Autonomous topological modeling of a home environment and topological localization using a sonar grid map , 2011, Auton. Robots.

[70]  Guilherme A. S. Pereira,et al.  Robot Navigation in Multi-terrain Outdoor Environments , 2009, Int. J. Robotics Res..

[71]  Roland Siegwart,et al.  Normal estimation for pointcloud using GPU based sparse tensor voting , 2012, 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO).

[72]  Yan Pailhas,et al.  Path Planning for Autonomous Underwater Vehicles , 2007, IEEE Transactions on Robotics.

[73]  Scott A. Bortoff,et al.  Path planning for UAVs , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[74]  Magnus Egerstedt,et al.  Autonomous driving in urban environments: approaches, lessons and challenges , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.