Investigation of CuSb4Te2 alloy for high-speed phase change random access memory applications

The thermal stability of amorphous Sb2Te film can be significantly improved by the addition of Cu. CuSb4Te2 alloy is considered to be a potential candidate for phase change random access memory (PCRAM), as evidenced by a higher crystallization temperature, a better data retention ability, and a faster switching speed in comparison with those of Ge2Sb2Te5. A reversible switching between set and reset states can be realized by an electric pulse as short as 7 ns for CuSb4Te2-based PCRAM cell. In addition, CuSb4Te2 shows endurance up to 1.5 × 105 cycles with a resistance ratio of about two orders of magnitude.

[1]  Luping Shi,et al.  Ultrafast switching in nanoscale phase-change random access memory with superlattice-like structures , 2011, Nanotechnology.

[2]  H.-S. Philip Wong,et al.  Phase Change Memory , 2010, Proceedings of the IEEE.

[3]  Nano composite Si2Sb2Te film for phase change memory , 2011 .

[4]  F. Rao,et al.  Ga-Sb-Se material for low-power phase change memory , 2011 .

[5]  Bomy Chen,et al.  Temperature Influence on Electrical Properties of Sb–Te Phase-Change Material , 2008 .

[6]  Se-Ho Lee,et al.  Highly scalable non-volatile and ultra-low-power phase-change nanowire memory. , 2007, Nature nanotechnology.

[7]  P. Kuo,et al.  Effect of Ag or Cu Doping on Erasable Phase-Change , 1998 .

[8]  T. Chin,et al.  Crystallization kinetics of amorphous Ga–Sb–Te chalcogenide films: Part I. Nonisothermal studies by differential scanning calorimetry , 2004 .

[9]  E. Domashevskaya,et al.  XPS and XES emission investigations of d–p resonance in some copper chalcogenides , 2001 .

[10]  A. V. Kolobov,et al.  Enhanced crystallization of GeTe from an Sb2Te3 template , 2012 .

[11]  Ming-Jinn Tsai,et al.  Ga2Te3Sb5—A Candidate for Fast and Ultralong Retention Phase‐Change Memory , 2009 .

[12]  N. Kaiser,et al.  Crystallization of amorphous antimony films , 1984 .

[13]  Luping P. Shi,et al.  Ultrafast crystallization and thermal stability of In–Ge doped eutectic Sb70Te30 phase change material , 2008 .

[14]  F. Zhuge,et al.  Mechanism for resistive switching in an oxide-based electrochemical metallization memory , 2012 .

[15]  Sung-Hoon Hong,et al.  Fast switching behavior of nanoscale Ag6In5Sb59Te30 based nanopillar type phase change memory , 2010, Nanotechnology.

[16]  C. Bergman,et al.  Structure of Sb2Te , 1991 .

[17]  T Uruga,et al.  Toward the ultimate limit of phase change in Ge(2)Sb(2)Te(5). , 2010, Nano letters.

[18]  W. Brown,et al.  Explosive crystallization of amorphous germanium , 1981 .

[19]  M. Wuttig,et al.  Phase-change materials for rewriteable data storage. , 2007, Nature materials.

[20]  Dependency of threshold switching on density of localized states of Ge2Sb2Te5 thin films for phase change random access memory , 2008 .

[21]  A. Kellock,et al.  Effect of Al and Cu doping on the crystallization properties of the phase change materials SbTe and GeSb , 2007 .

[22]  L. V. Pieterson,et al.  Phase-change recording materials with a growth-dominated crystallization mechanism: A materials overview , 2005 .

[23]  Fen Chen,et al.  Copper interconnect technology for the 32 nm node and beyond , 2009, 2009 IEEE Custom Integrated Circuits Conference.