Lanthanides in Solar Energy Conversion

Solar energy represents an abundant (1000 W·m-2) and seemingly cheap source of energy. One way to tap it is to transform light into electricity with photovoltaic devices. Single junction solar cells presently reach 32% conversion yield under 1-sun illumination while multijunction devices irradiated by concentrated light can reach 44%. One major problem encountered when trying to increase the conversion efficiency lies in the spectral mismatch between the absorption spectrum of the semiconductor and the solar emission spectrum. As a remedy, wavelength-converting materials are being developed and because solar cells perform best in a relatively narrow spectral range which depends on their bandgap energy, lanthanide luminescent divalent and trivalent ions are particularly well suited for this purpose. In addition non-luminescent ions feature special crystallographic and conduction properties which make them invaluable in lattice-matched multijunction devices. In this chapter, the performances of rare-earth ions in downconverting, downshifting, and upconverting materials embedded into the architecture of luminescent solar concentrators, silicon solar cells, semiconductor photovoltaic devices, and dye-sensitized solar cells (DSSCs) is comprehensively and critically reviewed. Other contributions, e.g. as scattering layers and as modifiers of the bandgap of titanium oxide in DSSCs, or to the powering of in vivo nanorobots are likewise described. Finally a general assessment is made and improvements on the order of +5 absolute% in conversion yield are predicted provided fully optimized materials can be tailored.

[1]  A. Goetzberger,et al.  Solar energy conversion with fluorescent collectors , 1977 .

[2]  Ping Huang,et al.  Near-infrared quantum cutting in transparent nanostructured glass ceramics. , 2008, Optics letters.

[3]  Xiang Zhang,et al.  Solar energy enhancement using down-converting particles: A rigorous approach , 2011 .

[4]  Wei Guo,et al.  An upconversion NaYF4:Yb3+,Er3+/TiO2 core–shell nanoparticle photoelectrode for improved efficiencies of dye-sensitized solar cells , 2013 .

[5]  Maxwell J. Crossley,et al.  Improving the light-harvesting of amorphous silicon solar cells with photochemical upconversion , 2012 .

[6]  F. Auzel Upconversion and anti-Stokes processes with f and d ions in solids. , 2004, Chemical reviews.

[7]  Young-Jin Jung,et al.  Enhanced efficiency of dye-sensitized TiO2 solar cells (DSSC) by doping of metal ions. , 2005, Journal of colloid and interface science.

[8]  H. Arakawa,et al.  Effective enhancement of the performance of black dye based dye-sensitized solar cells by metal oxide surface modification of the TiO2 photoelectrode. , 2012, Dalton transactions.

[9]  M. Ephritikhine,et al.  Solution, solid state, and film properties of a structurally characterized highly luminescent molecular europium plastic material excitable with visible light. , 2011, Inorganic chemistry.

[10]  K. Kawano,et al.  PL and PLE studies of KMgF3:Sm crystal and the effect of its wavelength conversion on CdS/CdTe solar cell , 2003 .

[11]  Edward S. Barnard,et al.  Design of Plasmonic Thin‐Film Solar Cells with Broadband Absorption Enhancements , 2009 .

[12]  B. van der Ende,et al.  Lanthanide ions as spectral converters for solar cells. , 2009, Physical chemistry chemical physics : PCCP.

[13]  T. Gregorkiewicz,et al.  Space-separated quantum cutting with silicon nanocrystals for photovoltaic applications , 2008 .

[14]  K. Kalyanasundaram Photochemical and Photoelectrochemical Approaches to Energy Conversion , 2010 .

[15]  Up-conversion semiconducting MoO3:Yb/Er nanocomposites as buffer layer in organic solar cells , 2012 .

[16]  C. L. Cheung,et al.  Growth of [100]‐Textured Gadolinium Nitride Films by CVD , 2010 .

[17]  Meifang Zhu,et al.  Construction of 980 nm laser-driven dye-sensitized photovoltaic cell with excellent performance for powering nanobiodevices implanted under the skin , 2012 .

[18]  Haruo Yamada,et al.  Application of rare-earth complexes for photovoltaic precursors , 1997 .

[19]  Viorel Badescu,et al.  Modelling of solar cells with down-conversion of high energy photons, anti-reflection coatings and light trapping , 2009 .

[20]  M. Peters,et al.  Advanced upconverter systems with spectral and geometric concentration for high upconversion efficiencies , 2008, 2008 Conference on Optoelectronic and Microelectronic Materials and Devices.

[21]  Hans Desilvestro,et al.  Long-term stability of dye solar cells , 2011 .

[22]  J. Méndez‐Ramos,et al.  Sol–gel glass-ceramics comprising rare-earth doped SnO2 and LaF3 nanocrystals: an efficient simultaneous UV and IR to visible converter , 2011 .

[23]  Thomas W. Hamann The end of iodide? Cobalt complex redox shuttles in DSSCs. , 2012, Dalton transactions.

[24]  Chuanxi Wang,et al.  Divalent europium nanocrystals: controllable synthesis, properties, and applications. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[25]  J. Qiu,et al.  A discussion on spectral modification from visible to near-infrared based on energy transfer for silicon solar cells , 2012 .

[26]  Majed Chergui,et al.  Ultrafast fluorescence studies of dye sensitized solar cells. , 2012, Physical chemistry chemical physics : PCCP.

[27]  Jihuai Wu,et al.  Enhancing photovoltaic performance of dye-sensitized solar cell by rare-earth doped oxide of Lu2O3:(Tm3+, Yb3+) , 2011 .

[28]  Guohong Zhou,et al.  Power conversion efficiency enhancement in silicon solar cell from solution processed transparent upconversion film , 2012 .

[29]  B. O'Regan,et al.  New insight into the regeneration kinetics of organic dye sensitised solar cells. , 2012, Chemical communications.

[30]  M. Green,et al.  Improving solar cell efficiencies by down-conversion of high-energy photons , 2002 .

[31]  Xiaobo Chen,et al.  Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. , 2007, Chemical reviews.

[32]  D. Narducci,et al.  Encapsulating Eu3+ complex doped layers to improve Si‐based solar cell efficiency , 2009 .

[33]  W.G.J.H.M. van Sark,et al.  Enhanced near-infrared response of a-Si:H solar cells with β-NaYF4:Yb3+ (18%), Er3+ (2%) upconversion phosphors , 2010 .

[34]  Jingbo Zhang,et al.  Sn-Doped TiO2 Photoanode for Dye-Sensitized Solar Cells , 2012 .

[35]  E. Bucher,et al.  The Use of Rare Earths in Photovoltaics , 1982 .

[36]  Bin Zhu,et al.  Enhanced cooperative quantum cutting in Tm3+- Yb3+ codoped glass ceramics containing LaF3 nanocrystals. , 2008, Optics express.

[37]  Avi Shalav,et al.  The role of polymers in the luminescence conversion of sunlight for enhanced solar cell performance , 2005 .

[38]  Avelino Corma,et al.  Hierarchically mesostructured doped CeO2 with potential for solar-cell use , 2004, Nature materials.

[39]  V. Badescu,et al.  Improved model for solar cells with up-conversion of low-energy photons , 2009 .

[40]  L. Etgar,et al.  Ga3+ and Y3+ Cationic Substitution in Mesoporous TiO2 Photoanodes for Photovoltaic Applications , 2011 .

[41]  Sukhvir Singh,et al.  Core–shell nanophosphor with enhanced NIR–visible upconversion as spectrum modifier for enhancement of solar cell efficiency , 2011 .

[42]  Yi-bing Cheng,et al.  Influence of some selected organic molecules on intensity of luminescence of TiO2:Eu3+ electrodes , 2009 .

[43]  S. Fischer,et al.  Experimental analysis of upconversion with both coherent monochromatic irradiation and broad spectrum illumination , 2011 .

[44]  Jihuai Wu,et al.  Enhancing photoelectrical performance of dye-sensitized solar cell by doping with europium-doped yttria rare-earth oxide , 2010 .

[45]  M. Hong,et al.  Lanthanide nanomaterials with photon management characteristics for photovoltaic application , 2012 .

[46]  William Wen,et al.  High-performance nanoporous TiO2/La2O3 hybrid photoanode for dye-sensitized solar cells. , 2012, ACS applied materials & interfaces.

[47]  Chin-Lung Cheng,et al.  Hydrothermal Synthesis of $\hbox{Eu}^{3+}$ -Doped $\hbox{Y}(\hbox{OH})_{3}$ Nanotubes as Downconversion Materials for Efficiency Enhancement of Screen-Printed Monocrystalline Silicon Solar Cells , 2012, IEEE Electron Device Letters.

[48]  J. Bünzli,et al.  Europium and Terbium tris(Dipicolinates) as Secondary Standards for Quantum Yield Determination , 2004 .

[49]  T. Isobe,et al.  Effects of YVO4:Bi3+,Eu3+ Nanophosphors Spectral Down-Shifter on Properties of Monocrystalline Silicon Photovoltaic Module , 2012 .

[50]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[51]  B. Richards,et al.  Increase in external quantum efficiency of encapsulated silicon solar cells from a luminescent down‐shifting layer , 2009 .

[52]  Ning Liu,et al.  Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4:Yb,Tm hybrid nanostructures. , 2011, Chemical communications.

[53]  S. Uchida,et al.  N-fused carbazole-zinc porphyrin-free-base porphyrin triad for efficient near-IR dye-sensitized solar cells. , 2011, Chemical communications.

[54]  Andries Meijerink,et al.  Downconversion for solar cells in NaYF4:Er,Yb , 2009 .

[55]  W.G.J.H.M. van Sark,et al.  Towards upconversion for amorphous silicon solar cells , 2010 .

[56]  Paul T. Miclea,et al.  Upconverted fluorescence in Er-doped ZBLAN glasses for high efficiency solar cells , 2009, Optics + Photonics for Sustainable Energy.

[57]  Neil Robertson,et al.  Characterization and reduction of reabsorption losses in luminescent solar concentrators. , 2010, Applied optics.

[58]  P. D. Swift,et al.  Maximising the light output of a Luminescent Solar Concentrator , 2004 .

[59]  J. Qiu,et al.  Efficient broadband near-infrared quantum cutting for solar cells. , 2010, Optics express.

[60]  Oliver Benson,et al.  Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+ codoped nanocrystals. , 2010, Nano letters.

[61]  Ping Huang,et al.  Quantum cutting downconversion by cooperative energy transfer from Ce3+ to Yb3+ in borate glasses , 2008 .

[62]  I. Gryczynski,et al.  Monolayers of silver nanoparticles decrease photobleaching: application to muscle myofibrils. , 2008, Biophysical journal.

[63]  Paul T. Miclea,et al.  Progress on up- and down-converted fluorescence in rare-doped fluorozirconate-based glass ceramics for high efficiency solar cells , 2010, Photonics Europe.

[64]  V. Malatesta,et al.  Photovoltaic quantum efficiency enhancement by light harvesting of organo-lanthanide Complexes , 2006 .

[65]  J. Méndez‐Ramos,et al.  Down-shifting by energy transfer in Dy3+–Tb3+ co-doped YF3-based sol–gel nano-glass-ceramics for photovoltaic applications , 2011 .

[66]  J. Lambe,et al.  Luminescent greenhouse collector for solar radiation. , 1976, Applied optics.

[67]  Teng‐Ming Chen,et al.  Improvement of conversion efficiency of silicon solar cells using up-conversion molybdate La2Mo2O9:Yb,R (R=Er, Ho) phosphors , 2011 .

[68]  C. Brabec,et al.  Rare‐Earth Ion Doped Up‐Conversion Materials for Photovoltaic Applications , 2011, Advanced materials.

[69]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[70]  B. T. Kilbourn The role of the lanthanides in applied catalysis , 1986 .

[71]  Yadong Li,et al.  Na(Y1.5 Na0.5)F6 single-crystal nanorods as multicolor luminescent materials. , 2006, Nano letters.

[72]  J. Deluca,et al.  Cascade fluorescent decay in Pr3+-doped fluorides: Achievement of a quantum yield greater than unity for emission of visible light , 1974 .

[73]  Shu-Hao Chang,et al.  Upconversion effects on the performance of near-infrared laser-driven polymer photovoltaic devices , 2012 .

[74]  J. Qiu,et al.  Enhanced downconversion luminescence by co-doping Ce3+ in Tb3+–Yb3+ doped borate glasses , 2010 .

[75]  Jihuai Wu,et al.  Enhancing the photoelectrical performance of dye-sensitized solar cells using TiO2:Eu3 + nanorods , 2010, Nanotechnology.

[76]  Albert Polman,et al.  Design principles for particle plasmon enhanced solar cells , 2008 .

[77]  A. Shalav,et al.  Enhancing the Near-Infrared Spectral Response of Silicon Optoelectronic Devices via Up-Conversion , 2007, IEEE Transactions on Electron Devices.

[78]  Qing Peng,et al.  Lanthanide-doped nanocrystals: synthesis, optical-magnetic properties, and applications. , 2011, Accounts of chemical research.

[79]  S. Chu,et al.  Investigation of Green Up‐Conversion Behavior in Y6W2O15:Yb3+,Er3+ Phosphor and its Verification in 973‐nm Laser‐Driven GaAs Solar Cell , 2012 .

[80]  Chin Li Barry Cheung,et al.  Rare earth hexaboride nanowires: General synthetic design and analysis using atom probe tomography , 2011 .

[81]  Marcello Campione,et al.  Low power, non-coherent sensitized photon up-conversion: modelling and perspectives. , 2012, Physical chemistry chemical physics : PCCP.

[82]  M. Baker,et al.  Homogeneous silver-coated nanoparticle substrates for enhanced fluorescence detection. , 2006, The journal of physical chemistry. B.

[83]  Vladimir Sytko,et al.  Phosphate glasses with great concentration of uranyl and rare earths ions and their films for solar cell concentrators , 1995, Optics & Photonics.

[84]  P. Schuck,et al.  Concentrating and recycling energy in lanthanide codopants for efficient and spectrally pure emission: the case of NaYF4:Er3+/Tm3+ upconverting nanocrystals. , 2012, The journal of physical chemistry. B.

[85]  M. Walkowiak,et al.  Increase in efficiency of dye-sensitized solar cells by porous TiO2 layer modification with gadolinium-containing thin layer , 2011 .

[86]  W.G.J.H.M. van Sark,et al.  Luminescent solar concentrators – A low cost photovoltaics alternative , 2012 .

[87]  G. Dong,et al.  Cooperative downconversion and near-infrared luminescence of Tb3+–Yb3+ codoped lanthanum borogermanate glasses , 2009 .

[88]  M. Grätzel Dye-sensitized solar cells , 2003 .

[89]  M. Zalas,et al.  The Influence of Titania Electrode Modification with Lanthanide Ions Containing Thin Layer on the Performance of Dye-Sensitized Solar Cells , 2012 .

[90]  Sue A. Carter,et al.  Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting , 2007 .

[91]  R. Koodali,et al.  Lanthanide modified semiconductor photocatalysts , 2012 .

[92]  G. Demopoulos,et al.  Near‐Infrared Sunlight Harvesting in Dye‐Sensitized Solar Cells Via the Insertion of an Upconverter‐TiO2 Nanocomposite Layer , 2010, Advanced materials.

[93]  Lisha Zhang,et al.  980‐nm Laser‐Driven Photovoltaic Cells Based on Rare‐Earth Up‐Converting Phosphors for Biomedical Applications , 2009 .

[94]  Ken-ichi Machida,et al.  Photovoltaic Cell Characteristics of Hybrid Silicon Devices with Lanthanide Complex Phosphor‐Coating Film , 1997 .

[95]  J. Noh,et al.  Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors , 2013, Nature Photonics.

[96]  Renata Reisfeld,et al.  Future technological applications of rare-earth-doped materials , 1983 .

[97]  P. Dirac The Quantum Theory of the Emission and Absorption of Radiation , 1927 .

[98]  W. M. Faustino,et al.  Evaluation of intramolecular energy transfer process in the lanthanide(III) bis- and tris-(TTA) complexes: Photoluminescent and triboluminescent behavior , 2008 .

[99]  B. Richards Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers , 2006 .

[100]  M. Debije,et al.  Monocrystalline silicon photovoltaic luminescent solar concentrator with 4.2% power conversion efficiency. , 2012, Optics letters.

[101]  Dai Songyuan,et al.  Influence of Yb-Doped Nanoporous TiO 2 Films on Photovoltaic Performance of Dye-Sensitized Solar Cells , 2006 .

[102]  S. Ye,et al.  Intense near-infrared emission from ZnO-LiYbO(2) hybrid phosphors through efficient energy transfer from ZnO to Yb(3+). , 2010, Optics express.

[103]  J. Qiu,et al.  Energy transfer between silicon–oxygen-related defects and Yb3+ in transparent glass ceramics containing Ba2TiSi2O8 nanocrystals , 2008 .

[104]  Xin Wang,et al.  Europium complex doped luminescent solar concentrators with extended absorption range from UV to visible region , 2011 .

[105]  Rute A. S. Ferreira,et al.  Modulating the Photoluminescence of Bridged Silsesquioxanes Incorporating Eu3+-Complexed n,n′-Diureido-2,2′-bipyridine Isomers: Application for Luminescent Solar Concentrators , 2011 .

[106]  W. Wong,et al.  Impressive europium red emission induced by two-photon excitation for biological applications. , 2011, Inorganic chemistry.

[107]  Jihuai Wu,et al.  Application of Yb3+, Er3+-doped yttrium oxyfluoride nanocrystals in dye-sensitized solar cells , 2012 .

[108]  Tad Hogg,et al.  Nanorobot architecture for medical target identification , 2008 .

[109]  K. Kramer,et al.  Improvements of an up-conversion NaYF/sub 4/:Er/sup 3+/ phosphor/silicon solar cell system for an enhanced response in the near-infrared , 2005, Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference, 2005..

[110]  W. Weber,et al.  Materials for luminescent greenhouse solar collectors. , 1977, Applied optics.

[111]  C. S. Fuller,et al.  A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power , 1954 .

[112]  Victor Moshchalkov,et al.  Towards broad range and highly efficient down-conversion of solar spectrum by Er3+–Yb3+ co-doped nano-structured glass-ceramics , 2010 .

[113]  A. Zaban,et al.  Strong Efficiency Enhancement of Dye-Sensitized Solar Cells Using a La-Modified TiCl4 Treatment of Mesoporous TiO2 Electrodes , 2011 .

[114]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[115]  Jae-Hong Kim,et al.  Engineering light: advances in wavelength conversion materials for energy and environmental technologies. , 2012, Environmental science & technology.

[116]  F. Jaque,et al.  Temperature effects on the efficiency of Luminescent Solar Concentrator (LSC) for photovoltaic systems , 1981 .

[117]  S. Ivanova,et al.  Strong 1.53 μm to NIR-VIS-UV upconversion in Er-doped fluoride glass for high-efficiency solar cells , 2009 .

[118]  Jan C. Hummelen,et al.  Broadband dye-sensitized upconversion of near-infrared light , 2012, Nature Photonics.

[119]  A. Meijerink,et al.  Visible quantum cutting in LiGdF4:Eu3+ through downconversion , 1999, Science.

[120]  R. J. Tonucci,et al.  Substrate engineering for high efficiency thin film solar cells , 2008 .

[121]  Zhijun Ma,et al.  Broadband spectral modification from visible light to near-infrared radiation using Ce(3+)-Er(3+) codoped yttrium aluminium garnet. , 2010, Physical chemistry chemical physics : PCCP.

[122]  J. Qiu,et al.  Broadband down-conversion spectral modification based on energy transfer , 2010 .

[123]  Xun Wang,et al.  Nd-doped TiO2 nanorods: preparation and application in dye-sensitized solar cells. , 2006, Chemistry, an Asian journal.

[124]  T. Sakata,et al.  Synthesis of BN-coated CeO2 fine powder as a new UV blocking material , 2000 .

[125]  Q. Tang,et al.  Enhancement of the Photovoltaic Performance of Dye‐Sensitized Solar Cells by Doping Y0.78Yb0.20Er0.02F3 in the Photoanode , 2012 .

[126]  W. V. Sark,et al.  Enhancement of solar cell performance by employing planar spectral converters , 2005 .

[127]  Q. Su,et al.  UV photon harvesting and enhanced near-infrared emission in novel quantum cutting Ca2BO3Cl:Ce3+,Tb3+,Yb3+ phosphor , 2009 .

[128]  G. Adachi,et al.  Preparation and application of lanthanide complex incorporated ormosil composite phosphor films , 2000 .

[129]  G. Lu,et al.  Cubic CeO2 nanoparticles as mirror-like scattering layers for efficient light harvesting in dye-sensitized solar cells. , 2012, Chemical communications.

[130]  M. McCann,et al.  Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials , 2007 .

[131]  S. Maier,et al.  Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. , 2011, Chemical reviews.

[132]  T. Peng,et al.  Effects of rare earth ion modifications on the photoelectrochemical properties of ZnO-based dye-sensitized solar cells , 2011 .

[133]  P. Comte,et al.  Doping a TiO2 Photoanode with Nb5+ to Enhance Transparency and Charge Collection Efficiency in Dye-Sensitized Solar Cells , 2010 .

[134]  Massimo Moret,et al.  NIR emitting ytterbium chelates for colourless luminescent solar concentrators. , 2012, Physical chemistry chemical physics : PCCP.

[135]  Hermi F. Brito,et al.  Experimental and theoretical emission quantum yield in the compound Eu(thenoyltrifluoroacetonate)3.2(dibenzyl sulfoxide) , 1998 .

[136]  H. Morikawa,et al.  Wavelength conversion film with glass coated Eu chelate for enhanced silicon-photovoltaic cell performance , 2009 .

[137]  Michael Grätzel,et al.  Highly efficient mesoscopic dye-sensitized solar cells based on donor-acceptor-substituted porphyrins. , 2010, Angewandte Chemie.

[138]  Florian Hallermann,et al.  Plasmon enhanced upconversion luminescence near gold nanoparticles-simulation and analysis of the interactions. , 2012, Optics express.

[139]  Renata Reisfeld,et al.  New developments in luminescence for solar energy utilization , 2010 .

[140]  P. Holloway,et al.  Phosphor coatings to enhance Si photovoltaic cell performance , 2007 .

[141]  Martin A. Green,et al.  Solar cell efficiency tables (version 40) , 2012 .

[142]  Yuzong Gu,et al.  Improvement of performance of dye-sensitized solar cells by doping Er2O3 into TiO2 electrodes , 2012 .

[143]  S. Glunz,et al.  Neodymium‐doped fluorochlorozirconate glasses as an upconversion model system for high efficiency solar cells , 2008 .

[144]  Jihuai Wu,et al.  Improving photovoltaic performance of dye-sensitized solar cell by downshift luminescence and p-doping effect of Gd2O3:Sm3+ , 2013 .

[145]  Tymish Y. Ohulchanskyy,et al.  Use of colloidal upconversion nanocrystals for energy relay solar cell light harvesting in the near-infrared region , 2012 .

[146]  M. Green,et al.  Improving solar cell efficiencies by up-conversion of sub-band-gap light , 2002 .

[147]  Zhaohua Jiang,et al.  Co-sensitized dye-sensitized solar cells based on d10 coordinate complexes towards their optoelectronic properties , 2010 .

[148]  Sheldon T. Bailey,et al.  Photo-stability and performance of CdSe/ZnS quantum dots in luminescent solar concentrators , 2009 .

[149]  Yalin Lu,et al.  Enhancing near-infrared solar cell response using upconverting transparentceramics , 2011 .

[150]  G. Stucky,et al.  Sensitized luminescence of trivalent europium by three-dimensionally arranged anatase nanocrystals in mesostructured titania thin films. , 2002, Angewandte Chemie.

[151]  D. L. Dexter Possibility of Luminescent Quantum Yields Greater than Unity , 1957 .

[152]  W. Cai,et al.  Plasmonics for extreme light concentration and manipulation. , 2010, Nature materials.

[153]  R. Schropp,et al.  Upconversion in solar cells , 2013, Nanoscale Research Letters.

[154]  G. Dong,et al.  Broadband conversion of visible light to near-infrared emission by Ce3+, Yb3+-codoped yttrium aluminum garnet. , 2009, Optics letters.

[155]  B. van der Ende,et al.  Near‐Infrared Quantum Cutting for Photovoltaics , 2009 .

[156]  M. Green,et al.  The application of up-converting phosphors for increased solar cell conversion efficiencies , 2003, 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of.

[157]  L. Hong,et al.  High‐rate deposition of a‐Si:H thin layers for high‐performance silicon heterojunction solar cells , 2013 .

[158]  Fuyou Li,et al.  Thermostable succinonitrile-based gel electrolyte for efficient, long-life dye-sensitized solar cells , 2007 .

[159]  Michael Grätzel,et al.  Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency , 2011, Science.

[160]  B. O'Regan,et al.  Influence of a TiCl4 post-treatment on nanocrystalline TiO2 films in dye-sensitized solar cells. , 2006, The journal of physical chemistry. B.

[161]  Michael G Debije,et al.  Progress in phosphors and filters for luminescent solar concentrators. , 2012, Optics express.

[162]  W.G.J.H.M. van Sark,et al.  Upconverter solar cells: materials and applications , 2011 .

[163]  Chen Yen-chi,et al.  Enhancing the performance of photovoltaic cells by using down-converting KCaGd(PO4)2:Eu3+ phosphors , 2011 .

[164]  Zhijun Ma,et al.  Intense infrared emission of Er(3+) in Ca(8)Mg(SiO(4))(4)Cl(2) phosphor from energy transfer of Eu(2+) by broadband down-conversion. , 2010, Optics express.

[165]  G. H. Bauer,et al.  Enhancement of silicon solar cell efficiency by upconversion: Optical and electrical characterization , 2010 .

[166]  Thomas W. Hamann,et al.  Dye-sensitized solar cell redox shuttles , 2011 .

[167]  H. Fu,et al.  NaYF4:Er3+/Yb3+–graphene composites: preparation, upconversion luminescence, and application in dye-sensitized solar cells , 2012 .

[168]  Y. Wang,et al.  A europium complex with enhanced long-wavelength sensitized luminescent properties. , 2010, Physical chemistry chemical physics : PCCP.

[169]  Lirong Zhang,et al.  Two Main Chain Polymeric Metal Complexes as Dye Sensitizers for Dye-Sensitized Solar Cells Based on the Coordination of the Ligand Containing 8-Hydroxyquinoline and Phenylethyl or Fluorene Units with Eu(III) , 2010 .

[170]  Wieslaw Strek,et al.  Power dependence of luminescence of Tb3+ -doped KYb(WO4)2 crystal , 2001 .

[171]  H. Seo,et al.  Improvement of the conversion efficiency of solar cell by rare earth ion , 2009 .

[172]  Gan-Moog Chow,et al.  Water -soluble NaYF4:Yb,Er (Tm)/NaYF4/Polymer Core/Shell/Shell nanoparticles with significant enhancement of upconversion fluorescence , 2007 .

[173]  S. Chu,et al.  Effect of Si–N Incorporation on Color-Tunable CaEuAl2–xSixO4–xNx Phosphors: Luminescence, Thermal Stability, and Its Application , 2011 .

[174]  Thijs J. H. Vlugt,et al.  Downconversion for solar cells in YF3:Nd3+, Yb3+ , 2010 .

[175]  G. Demopoulos,et al.  Enhanced performance of dye-sensitized solar cells by utilization of an external, bifunctional layer consisting of uniform β-NaYF₄:Er³⁺/Yb³⁺ nanoplatelets. , 2011, ACS applied materials & interfaces.

[176]  Guozhong Cao,et al.  Applications of light scattering in dye-sensitized solar cells. , 2012, Physical chemistry chemical physics : PCCP.

[177]  James R. Durrant,et al.  Electron Transfer Dynamics in Dye-Sensitized Solar Cells , 2011 .

[178]  Michael Grätzel,et al.  Nanocrystalline dye-sensitized solar cell/copper indium gallium selenide thin-film tandem showing greater than 15% conversion efficiency , 2006 .

[179]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[180]  Jun Zhang,et al.  Luminescent solar concentrator employing rare earth complex with zero self-absorption loss , 2011 .

[181]  James R. McKone,et al.  Solar water splitting cells. , 2010, Chemical reviews.

[182]  Jung Ho Ryu,et al.  Wavelength Conversion Lanthanide(III)-cored Complex for Highly Efficient Dye-sensitized Solar Cells , 2011 .

[183]  B. Richards,et al.  Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: A review , 2009 .

[184]  Zhaoqi Sun,et al.  Dy3+ activated LaVO4 films synthesized by precursors with different solution concentrations , 2012 .

[185]  Timothy D Heidel,et al.  High-Efficiency Organic Solar Concentrators for Photovoltaics , 2008, Science.

[186]  M. Nath,et al.  Nanometal-Glass Hybrid Nanocomposites: Synthesis, Properties and Applications , 2010 .

[187]  E. Stathatos,et al.  Enhanced photon harvesting in silicon multicrystalline solar cells by new lanthanide complexes as light concentrators , 2011 .

[188]  Martin A. Green,et al.  Harnessing plasmonics for solar cells , 2012, Nature Photonics.

[189]  Maxwell J. Crossley,et al.  Photochemical Upconversion Enhanced Solar Cells: Effect of a Back Reflector , 2012 .

[190]  Svetlana V. Eliseeva,et al.  Rare earths: jewels for functional materials of the future , 2011 .

[191]  A. Mendes,et al.  Dye–Sensitized Solar Cells: An Overview , 2011 .

[192]  A. Shalav,et al.  Application of NaYF 4 : Er 3 + up-converting phosphors for enhanced near-infrared silicon solar cell response , 2005 .

[193]  Q. Zhang,et al.  Efficient near-infrared quantum splitting in YVO4:Ho3+ for photovoltaics , 2012 .

[194]  Joseph R Lakowicz,et al.  Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission. , 2005, Analytical biochemistry.

[195]  F. Lahoz Ho(3+)-doped nanophase glass ceramics for efficiency enhancement in silicon solar cells. , 2008, Optics letters.

[196]  Thijs J. H. Vlugt,et al.  Energy transfer mechanism for downconversion in the (Pr3+, Yb3+) couple , 2010 .

[197]  P. Gibart,et al.  Below Band-Gap IR Response of Substrate-Free GaAs Solar Cells Using Two-Photon Up-Conversion , 1996 .

[198]  S. Zou,et al.  Efficient Bi3+ → Nd3+ energy transfer in Gd2O3:Bi3+,Nd3+ , 2011 .

[199]  A. Turkovi Dye-sensitized solar cell with Ce02 and mixed CeO2/Sn02 photoanodes*1 , 1997 .

[200]  E. Beaurepaire,et al.  Emission properties and applications of nanostructured luminescent oxide nanoparticles , 2005 .

[201]  Xiaojun Wang,et al.  Y3Al5O12:Ce phosphors as a scattering layer for high-efficiency dye sensitized solar cells. , 2012, Chemical communications.

[202]  Yaoming Xiao,et al.  Improving Photoelectrical Performance of a Dye Sensitized Solar Cell by Doping Rare-earth Oxide Y2O3:(Eu3+, Gd3+) , 2012 .

[203]  Tao Yu,et al.  Increasing the Oxygen Vacancy Density on the TiO2 Surface by La-Doping for Dye-Sensitized Solar Cells , 2010 .

[204]  Yaoming Xiao,et al.  Application of upconversion luminescence in dye-sensitized solar cells , 2011 .

[205]  Markus P. Hehlen,et al.  Hexagonal Sodium Yttrium Fluoride Based Green and Blue Emitting Upconversion Phosphors , 2004 .

[206]  Nan Chen,et al.  Multiscaled hierarchical nanostructures for enhancing the conversion efficiency of crystalline silicon solar cells , 2012 .

[207]  M. Green,et al.  Efficiency enhancement of solar cells by luminescent up-conversion of sunlight , 2006 .

[208]  Andries Meijerink,et al.  Efficient visible to infrared quantum cutting through downconversion with the Er3+–Yb3+ couple in Cs3Y2Br9 , 2010 .

[209]  D. Cahen,et al.  Can up- and down-conversion and multi-exciton generation improve photovoltaics? , 2008 .

[210]  Catherine J Murphy,et al.  Applications of colloidal inorganic nanoparticles: from medicine to energy. , 2012, Journal of the American Chemical Society.

[211]  U. Rodríguez-Mendoza,et al.  Upconversion mechanisms in rare-earth doped glasses to improve the efficiency of silicon solar cells , 2011 .

[212]  Improvement efficiency of a dye-sensitized solar cell using Eu3+ modified TiO2 nanoparticles as a secondary layer electrode , 2010 .

[213]  Junichi Ohwaki,et al.  Efficient 1.5 µm to Visible Upconversion in Er3+-Doped Halide Phosphors , 1994 .

[214]  Cheng‐Hui Li,et al.  Improving spectral response of monocrystalline silicon photovoltaic modules using high efficient luminescent down‐shifting Eu3+ complexes , 2012 .

[215]  P. Shipkovs,et al.  Electrodes for GaOHPc:PCBM/P3HT:PCBM bulk heterojunction solar cell , 2012 .

[216]  T. Tan Rare earth nanotechnology , 2012 .

[217]  Jing Zhang,et al.  Effect of Cerium Doping in the TiO2 Photoanode on the Electron Transport of Dye-Sensitized Solar Cells , 2012 .

[218]  C. Mak,et al.  Luminescence from the 3P2 state of Tm3 , 2002 .

[219]  Chunzhong Li,et al.  Planar scattering from hierarchical anatase TiO2 nanoplates with variable shells to improve light harvesting in dye-sensitized solar cells. , 2011, Chemical communications.

[220]  J. Méndez‐Ramos,et al.  Understanding the up-conversion dynamics in high efficiency Yb3+–Tm3+ systems for solar cells , 2011 .

[221]  A. Meyer,et al.  Luminescent Solar Concentrators--a review of recent results. , 2008, Optics express.

[222]  Z. Ding,et al.  Synthesis, structure and optical properties of Eu3+/TiO2 nanocrystals at room temperature , 2006 .

[223]  Yaoming Xiao,et al.  Preparation of Gd2O3:Eu3+ downconversion luminescent material and its application in dye-sensitized solar cells , 2011 .

[224]  P. Smet,et al.  Luminescence and x-ray absorption measurements of persistent SrAl 2 O 4 :Eu,Dy powders: Evidence for valence state changes , 2011 .

[225]  Dong-Ung Lee,et al.  Anti-Helicobacter pylori Activity and Structure-Activity Relationships of Berberine Derivatives , 2009 .

[226]  Michael Grätzel,et al.  A new generation of platinum and iodine free efficient dye-sensitized solar cells. , 2012, Physical chemistry chemical physics : PCCP.

[227]  R. Reisfeld Industrial applications of rare earths in fiber optics, luminescent solar concentrators and lasers , 1987 .

[228]  B. Richards,et al.  Advanced Material Concepts for Luminescent Solar Concentrators , 2008, IEEE Journal of Selected Topics in Quantum Electronics.

[229]  Plasmon enhanced solar-to-fuel energy conversion. , 2011, Nano letters.

[230]  Wenlian Li,et al.  OPV devices based on functionalized lanthanide complexes for application in UV-light detection , 2007 .

[231]  W. Chueh,et al.  High-Flux Solar-Driven Thermochemical Dissociation of CO2 and H2O Using Nonstoichiometric Ceria , 2010, Science.

[232]  W. V. Sark,et al.  Simulating performance of solar cells with spectral downshifting layers , 2008 .

[233]  Yaoming Xiao,et al.  Application of Y(2)O(3):Er(3+) nanorods in dye-sensitized solar cells. , 2012, ChemSusChem.

[234]  J. Bünzli,et al.  Lanthanide NIR luminescence for telecommunications, bioanalyses and solar energy conversion , 2010 .

[235]  M. Abdel-Mottaleb,et al.  Titanium dioxide nanomaterial doped with trivalent lanthanide ions of Tb, Eu and Sm: Preparation, characterization and potential applications , 2007 .

[236]  A. Belcher,et al.  Highly efficient plasmon-enhanced dye-sensitized solar cells through metal@oxide core-shell nanostructure. , 2011, ACS nano.

[237]  G. Stucky,et al.  Visible and near-IR luminescence via energy transfer in rare earth doped mesoporous titania thin films with nanocrystalline walls , 2003 .

[238]  W. Cao,et al.  High efficiency co-sensitized solar cell based on luminescent lanthanide complexes with pyridine-2,6-dicarboxylic acid ligands. , 2012, Dalton transactions.

[239]  Xiaoyong Huang,et al.  Efficient down- and up-conversion of Pr3+–Yb3+ co-doped transparent oxyfluoride glass ceramics , 2012 .

[240]  M. J. Harvey Alkali Metals: Organometallic Chemistry , 2014 .

[241]  Mohamed Abdel-Mottaleb,et al.  Down-converting lanthanide doped TiO2 photoelectrodes for efficiency enhancement of dye-sensitized solar cells , 2011 .

[242]  B. Streetman Solid state electronic devices , 1972 .

[243]  J Franklin,et al.  Optimisation of a three-colour luminescent solar concentrator daylighting system , 2004 .

[244]  H. Mishra,et al.  Photoinduced proton transfer coupled with energy transfer: Mechanism of sensitized luminescence of terbium ion by salicylic acid doped in polymer. , 2008, The Journal of chemical physics.

[245]  Mark O. Liu,et al.  Microwave-assisted synthesis of phthalocyanine–porphyrin complex and its photoelectric conversion properties , 2004 .

[246]  M. Green,et al.  Luminescent layers for enhanced silicon solar cell performance: Up-conversion , 2006 .

[247]  Q. Zhang,et al.  Broadband Downconversion of Ultraviolet Light to Near-Infrared Emission in Bi3+–Yb3+-Codoped Y2O3 Phosphors , 2011 .