Optogenetics enables functional analysis of human embryonic stem cell–derived grafts in a Parkinson's disease model

[1]  Alexander E. Dityatev,et al.  Remote control of induced dopaminergic neurons in parkinsonian rats. , 2014, The Journal of clinical investigation.

[2]  Y. Ganat,et al.  Enhancement of Polysialic Acid Expression Improves Function of Embryonic Stem‐Derived Dopamine Neuron Grafts in Parkinsonian Mice , 2014, Stem cells translational medicine.

[3]  D. Krainc,et al.  Human iPSC-based modeling of late-onset disease via progerin-induced aging. , 2013, Cell stem cell.

[4]  O. Lindvall,et al.  Human induced pluripotent stem cell-derived cortical neurons integrate in stroke-injured cortex and improve functional recovery. , 2013, Brain : a journal of neurology.

[5]  P. Calabresi,et al.  Region-specific restoration of striatal synaptic plasticity by dopamine grafts in experimental parkinsonism , 2013, Proceedings of the National Academy of Sciences.

[6]  E. Ziff,et al.  Ca2+-permeable AMPA (α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid) Receptors and Dopamine D1 Receptors Regulate GluA1 Trafficking in Striatal Neurons* , 2013, The Journal of Biological Chemistry.

[7]  Susana R. Neves,et al.  ERK regulation of phosphodiesterase 4 enhances dopamine-stimulated AMPA receptor membrane insertion , 2013, Proceedings of the National Academy of Sciences.

[8]  N. Koshikawa,et al.  Apomorphine‐induced modulation of neural activities in the ventrolateral striatum of rats , 2013, Synapse.

[9]  S. Lipton,et al.  High-Frequency Hippocampal Oscillations Activated by Optogenetic Stimulation of Transplanted Human ESC-Derived Neurons , 2012, The Journal of Neuroscience.

[10]  K. Deisseroth,et al.  Rapid regulation of depression-related behaviors by control of midbrain dopamine neurons , 2012, Nature.

[11]  M. Tomishima,et al.  Identification of embryonic stem cell-derived midbrain dopaminergic neurons for engraftment. , 2012, The Journal of clinical investigation.

[12]  O. Lindvall,et al.  Generation of regionally specified neural progenitors and functional neurons from human embryonic stem cells under defined conditions. , 2012, Cell reports.

[13]  D. Surmeier,et al.  Floor plate-derived dopamine neurons from hESCs efficiently engraft in animal models of PD , 2011, Nature.

[14]  O. Brüstle,et al.  Human embryonic stem cell-derived neurons establish region-specific, long-range projections in the adult brain , 2011, Cellular and Molecular Life Sciences.

[15]  N. Socci,et al.  miR-371-3 expression predicts neural differentiation propensity in human pluripotent stem cells. , 2011, Cell stem cell.

[16]  Karl Deisseroth,et al.  Functional Control of Transplantable Human ESC‐Derived Neurons Via Optogenetic Targeting , 2010, Stem cells.

[17]  P. Greengard,et al.  Distinct Levels of Dopamine Denervation Differentially Alter Striatal Synaptic Plasticity and NMDA Receptor Subunit Composition , 2010, The Journal of Neuroscience.

[18]  Anatol C. Kreitzer,et al.  Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry , 2010, Nature.

[19]  Anders Björklund,et al.  Characterisation of behavioural and neurodegenerative changes induced by intranigral 6‐hydroxydopamine lesions in a mouse model of Parkinson’s disease , 2010, The European journal of neuroscience.

[20]  K. Deisseroth,et al.  Molecular and Cellular Approaches for Diversifying and Extending Optogenetics , 2010, Cell.

[21]  O. Lindvall,et al.  Stem cells in human neurodegenerative disorders--time for clinical translation? , 2010, The Journal of clinical investigation.

[22]  Yvette E. Fisher,et al.  Dopamine modulation of excitatory currents in the striatum is dictated by the expression of D1 or D2 receptors and modified by endocannabinoids , 2010, The European journal of neuroscience.

[23]  D. James Surmeier,et al.  Robust Pacemaking in Substantia Nigra Dopaminergic Neurons , 2009, The Journal of Neuroscience.

[24]  M. Tomishima,et al.  Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling , 2009, Nature Biotechnology.

[25]  R. Dolmetsch,et al.  Calcium Imaging of Cortical Neurons using Fura-2 AM , 2009, Journal of visualized experiments : JoVE.

[26]  A. Nambu Seven problems on the basal ganglia , 2008, Current Opinion in Neurobiology.

[27]  K. Deisseroth,et al.  eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications , 2008, Brain cell biology.

[28]  C. Cepeda,et al.  Repeated Exposure to Methamphetamine Causes Long-Lasting Presynaptic Corticostriatal Depression that Is Renormalized with Drug Readministration , 2008, Neuron.

[29]  S. Nishikawa,et al.  A ROCK inhibitor permits survival of dissociated human embryonic stem cells , 2007, Nature Biotechnology.

[30]  D. Surmeier,et al.  D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons , 2007, Trends in Neurosciences.

[31]  R. Pearce,et al.  Functional Neural Development from Human Embryonic Stem Cells: Accelerated Synaptic Activity via Astrocyte Coculture , 2007, The Journal of Neuroscience.

[32]  M. Beal,et al.  Functional engraftment of human ES cell–derived dopaminergic neurons enriched by coculture with telomerase-immortalized midbrain astrocytes , 2006, Nature Medicine.

[33]  Stephen B. Dunnett,et al.  The Corridor Task: A simple test of lateralised response selection sensitive to unilateral dopamine deafferentation and graft-derived dopamine replacement in the striatum , 2005, Brain Research Bulletin.

[34]  Nobuko Uchida,et al.  Human neural stem cells differentiate and promote locomotor recovery in spinal cord-injured mice. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Anders Björklund,et al.  Functional properties and synaptic integration of genetically labelled dopaminergic neurons in intrastriatal grafts , 2005, The European journal of neuroscience.

[36]  K. Yung,et al.  Differential Expression of α-Amino-3-Hydroxy-5-Methyl-4-Isoxazole-Propionate Glutamate Receptors in the Rat Striatum during Postnatal Development , 2003, Neurosignals.

[37]  R. McKay,et al.  Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson's disease , 2002, Nature.

[38]  P. Greengard,et al.  Regulation of Phosphorylation of the GluR1 AMPA Receptor in the Neostriatum by Dopamine and Psychostimulants In Vivo , 2000, The Journal of Neuroscience.

[39]  L. Raymond,et al.  D1 Dopamine Receptor‐Induced Cyclic AMP‐Dependent Protein Kinase Phosphorylation and Potentiation of Striatal Glutamate Receptors , 1999, Journal of neurochemistry.

[40]  Greg A. Gerhardt,et al.  Multiple single-unit recordings in the striatum of freely moving animals: effects of apomorphine and d-amphetamine in normal and unilateral 6-hydroxydopamine-lesioned rats , 1999, Brain Research.

[41]  D. Trono,et al.  A Third-Generation Lentivirus Vector with a Conditional Packaging System , 1998, Journal of Virology.

[42]  M. Umemiya,et al.  Dopaminergic modulation of excitatory postsynaptic currents in rat neostriatal neurons. , 1997, Journal of neurophysiology.

[43]  E. Pothos,et al.  l‐3,4‐Dihydroxyphenylalanine Increases the Quantal Size of Exocytotic Dopamine Release In Vitro , 1996, Journal of neurochemistry.

[44]  C. Cepeda,et al.  Neuromodulatory actions of dopamine in the neostriatum are dependent upon the excitatory amino acid receptor subtypes activated. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[45]  A. Björklund,et al.  Dopaminergic transplants normalize amphetamine- and apomorphine-induced Fos expression in the 6-hydroxydopamine-lesioned striatum , 1992, Neuroscience.

[46]  S. Dunnett,et al.  Graft-derived recovery from 6-OHDA lesions: specificity of ventral mesencephalic graft tissues , 2004, Experimental Brain Research.

[47]  K. Yung,et al.  Differential expression of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate glutamate receptors in the rat striatum during postnatal development. , 2003, Neuro-Signals.

[48]  G. Akopian,et al.  Corticostriatal paired-pulse potentiation produced by voltage-dependent activation of NMDA receptors and L-type Ca(2+) channels. , 2002, Journal of neurophysiology.

[49]  P. Greengard,et al.  Protein phosphatase 1 modulation of neostriatal AMPA channels: regulation by DARPP–32 and spinophilin , 1999, Nature Neuroscience.