Navigation parameter estimation from sequential aerial images

This paper presents a method for navigation parameter estimation using sequential aerial images, where navigation parameters represent the velocity and position information of an aircraft for autonomous navigation. The proposed navigation parameter estimation system is composed of two parts: relative position estimation and absolute position estimation. Relative position estimation recursively computes the current velocity and position of an aircraft by accumulating navigation parameters extracted from two successive aerial images. However, simple accumulation of parameter values decreases reliability of the extracted parameters as an aircraft goes on navigating, resulting in a large position error. Therefore absolute position estimation is required to compensate for position error generated in the relative position estimation step. A hybrid absolute position estimation algorithm combining image matching and digital elevation model (DEM) matching is presented. In image matching, line segment matching or Hausdorff distance (HD) matching is employed whereas in DEM matching a new algorithm for absolute position estimation by minimizing the variance of displacements is proposed. Computer simulation with real aerial image sequences shows the effectiveness of the proposed algorithm.

[1]  Rama Chellappa,et al.  Extraction of Straight Lines in Aerial Images , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Yoram Bresler,et al.  On-Line Vehicle Motion Estimation from Visual Terrain Information Part I: Recursive Image Registration , 1986, IEEE Transactions on Aerospace and Electronic Systems.

[3]  Shmuel Peleg,et al.  Stereo by Incremental Matching of Contours , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Joe P. Golden,et al.  Terrain Contour Matching (TERCOM): A Cruise Missile Guidance Aid , 1980, Optics & Photonics.

[5]  E.A. Lee,et al.  Synchronous data flow , 1987, Proceedings of the IEEE.

[6]  Daniel P. Huttenlocher,et al.  Comparing Images Using the Hausdorff Distance , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Florian Schröder apE—the original dataflow visualization environment , 1995, COMG.

[8]  Konstantinos Konstantinides,et al.  The Khoros software development environment for image and signal processing , 1994, IEEE Trans. Image Process..

[9]  Jake K. Aggarwal,et al.  Matching Aerial Images to 3-D Terrain Maps , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Edward A. Lee,et al.  Dataflow process networks , 1995, Proc. IEEE.

[11]  Ching-Fang Lin,et al.  Advanced Control Systems Design , 1993 .

[12]  Kwae-Hi Lee,et al.  Recovering an elevation map by stereo modeling of the aerial image sequence , 1994 .

[13]  Yoram Bresler,et al.  On-line Vehicle Motion Estimation from Visual Terrain Information Part II: Ground Velocity and Position Estimation , 1986, IEEE Transactions on Aerospace and Electronic Systems.

[14]  Rama Chellappa,et al.  A computational vision approach to image registration , 1993, IEEE Trans. Image Process..

[15]  Edward A. Lee,et al.  Looped schedules for dataflow descriptions of multirate signal processing algorithms , 1994, Formal Methods Syst. Des..