Boundary behavior of harmonic functions in non-tangentially accessible domains

[1]  Charles Fefferman,et al.  Characterizations of bounded mean oscillation , 1971 .

[2]  R. A. Hunt,et al.  Positive harmonic functions on Lipschitz domains , 1970 .

[3]  J. Wu Comparisons of kernel functions, boundary Harnack principle and relative Fatou theorem on Lipschitz domains , 1978 .

[4]  Richard L. Wheeden,et al.  Weighted bounded mean oscillation and the Hilbert transform , 1976 .

[5]  Jussi Väisälä,et al.  Lectures on n-Dimensional Quasiconformal Mappings , 1971 .

[6]  G. Weiss,et al.  Extensions of Hardy spaces and their use in analysis , 1977 .

[7]  D. Burkholder,et al.  A maximal function characterization of the class , 1971 .

[8]  I. I. Privalov Randeigenschaften analytischer Funktionen , 1956 .

[9]  A. Calderón On a theorem of Marcinkiewicz and Zygmund , 1950 .

[10]  R. Macías,et al.  Lipschitz functions on spaces of homogeneous type , 1979 .

[11]  R. Macías,et al.  A Decomposition Into Atoms Of Distributions On Spaces Of Homogeneous Type , 1979 .

[12]  C. Kenig Weighted H p Spaces on Lipschitz Domains , 1980 .

[13]  R. A. Hunt,et al.  On the boundary values of harmonic functions , 1968 .

[14]  Olli Lehto,et al.  Quasiconformal mappings in the plane , 1973 .

[15]  D. Spencer A Function-Theoretic Identity , 1943 .

[16]  F. Gehring TheLp-integrability of the partial derivatives of A quasiconformal mapping , 1973 .

[17]  A. Zygmund,et al.  A theorem of Lusin. Part I , 1938 .

[18]  D. Burkholder,et al.  Distribution function inequalities for the area integral , 1972 .

[19]  F. Gehring,et al.  Uniform domains and the quasi-hyperbolic metric , 1979 .

[20]  E. Stein On the theory of harmonic functions of several variables , 1961 .

[21]  Björn E. J. Dahlberg,et al.  Estimates of harmonic measure , 1977 .

[22]  Norbert Wiener,et al.  The Dirichlet Problem , 1924 .

[23]  Elias M. Stein,et al.  On the theory of harmonic functions of several variables , 1960 .

[24]  E. Stein,et al.  Boundedness of translation invariant operators on Hölder spaces and L p -spaces , 1967 .

[25]  Robert S. Martin,et al.  Minimal positive harmonic functions , 1941 .

[26]  A. Calderón On the behaviour of harmonic functions at the boundary , 1950 .

[27]  Robert H. Latter A characterization of $H^{p}(R^{n})$ in terms of atoms , 1978 .

[28]  R. Coifman A real variable characterization of $H^{p}$ , 1974 .

[29]  F. John,et al.  On functions of bounded mean oscillation , 1961 .

[30]  On the Hardy spaceH1 of aC1 domain , 1981 .

[31]  F. John Rotation and strain , 1961 .

[32]  E. Stein Singular Integrals and Di?erentiability Properties of Functions , 1971 .

[33]  A. Calderón,et al.  Cauchy integrals on Lipschitz curves and related operators. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Ronald R. Coifman,et al.  Weighted norm inequalities for maximal functions and singular integrals , 1974 .

[35]  E. Stein,et al.  Hp spaces of several variables , 1972 .

[36]  Akihito Uchiyama A MAXIMAL FUNCTION CHARACTERIZATION OF 77' ON THE SPACE OF HOMOGENEOUS TYPE , 2010 .

[37]  E. Stein Topics in Harmonic Analysis Related to the Littlewood-Paley Theory. , 1970 .

[38]  C. Kenig,et al.  An identity with applications to harmonic measure , 1980 .

[39]  C. Kenig,et al.  The Dirichlet problem in non-smooth domains , 1981 .

[40]  Bjorn E. J. Dahlbert Weighted norm inequalities for the Lusin area integral and the nontangential maximal functions for functions harmonic in a Lipschitz domain , 1980 .

[41]  L. Carleson On the existence of boundary values for harmonic functions in several variables , 1962 .

[42]  M. Brelot El'ements de la th'eorie classique du Potentiel , 1965 .