Algorithms for bridging scale method parameters
暂无分享,去创建一个
[1] Eduard G. Karpov,et al. A Green's function approach to deriving non‐reflecting boundary conditions in molecular dynamics simulations , 2005 .
[2] T. Belytschko,et al. A bridging domain method for coupling continua with molecular dynamics , 2004 .
[3] L. S. Kothari,et al. introduction to lattice dynamics , 1972 .
[4] Thomas Y. Hou,et al. A pseudo-spectral multiscale method: Interfacial conditions and coarse grid equations , 2006, J. Comput. Phys..
[5] W. Cai,et al. Minimizing boundary reflections in coupled-domain simulations. , 2000, Physical review letters.
[6] William T. Weeks,et al. Numerical Inversion of Laplace Transforms Using Laguerre Functions , 1966, JACM.
[7] J. D. Doll,et al. Generalized Langevin equation approach for atom/solid-surface scattering: General formulation for classical scattering off harmonic solids , 1976 .
[8] Jonathan A. Zimmerman,et al. Calculation of stress in atomistic simulation , 2004 .
[9] Noam Bernstein,et al. Spanning the length scales in dynamic simulation , 1998 .
[10] Min Zhou,et al. A new look at the atomic level virial stress: on continuum-molecular system equivalence , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[11] William A. Curtin,et al. A coupled atomistic/continuum model of defects in solids , 2002 .
[12] Berend Smit,et al. Molecular Dynamics Simulations , 2002 .
[13] Eduard G. Karpov,et al. Initial tension in randomly disordered periodic lattices , 2003 .
[14] J. Tinsley Oden,et al. MultiScale Modeling of Physical Phenomena: Adaptive Control of Models , 2006, SIAM J. Sci. Comput..
[15] Eduard G. Karpov,et al. Molecular dynamics boundary conditions for regular crystal lattices , 2004 .
[16] Jacob Fish,et al. Discrete-to-continuum bridging based on multigrid principles , 2004 .
[17] Gregory J. Wagner,et al. Coupling of atomistic and continuum simulations using a bridging scale decomposition , 2003 .
[18] Harold S. Park,et al. A temperature equation for coupled atomistic/continuum simulations , 2004 .
[19] Jimmie D. Doll,et al. Generalized Langevin equation approach for atom/solid-surface scattering: Inelastic studies , 1975 .
[20] Harold S. Park,et al. Non‐reflecting boundary conditions for atomistic, continuum and coupled atomistic/continuum simulations , 2005 .
[21] E Weinan,et al. A dynamic atomistic-continuum method for the simulation of crystalline materials , 2001 .
[22] E Weinan,et al. Multiscale modeling of the dynamics of solids at finite temperature , 2005 .
[23] Ronald E. Miller,et al. The Quasicontinuum Method: Overview, applications and current directions , 2002 .
[24] J. D. Doll,et al. Generalized Langevin equation approach for atom/solid‐surface scattering: Collinear atom/harmonic chain model , 1974 .
[25] Thomas Y. Hou,et al. A mathematical framework of the bridging scale method , 2006 .
[26] Harold S. Park,et al. An introduction and tutorial on multiple-scale analysis in solids , 2004 .
[27] Harold S. Park,et al. An introduction to computational nanomechanics and materials , 2004 .
[28] Emily A. Carter,et al. Density-functional-theory-based local quasicontinuum method: Prediction of dislocation nucleation , 2004 .
[29] J. Q. Broughton,et al. Concurrent coupling of length scales: Methodology and application , 1999 .
[30] Harold S. Park,et al. The bridging scale for two-dimensional atomistic/continuum coupling , 2005 .
[31] M. Ortiz,et al. Quasicontinuum analysis of defects in solids , 1996 .
[32] Harold S. Park,et al. A phonon heat bath approach for the atomistic and multiscale simulation of solids , 2007 .
[33] Kenny S. Crump,et al. Numerical Inversion of Laplace Transforms Using a Fourier Series Approximation , 1976, J. ACM.
[34] Wing Kam Liu,et al. Nonlinear Finite Elements for Continua and Structures , 2000 .
[35] C. Kittel. Introduction to solid state physics , 1954 .
[36] Harold S. Park,et al. Three-dimensional bridging scale analysis of dynamic fracture , 2005 .
[37] J. Banavar,et al. Computer Simulation of Liquids , 1988 .
[38] Ronald E. Miller,et al. Atomistic/continuum coupling in computational materials science , 2003 .
[39] Min Zhou. Thermomechanical continuum representation of atomistic deformation at arbitrary size scales , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[40] William A. Curtin,et al. Coupled Atomistic/Discrete Dislocation Simulations of Nanoindentation at Finite Temperature , 2005 .