Algorithms for bridging scale method parameters

Multiple scale simulation methods have been the focus of much attention in recent years. The Bridging Scale method (BSM) of Liu and co-workers was developed as a framework for the dynamic concurrent coupling of atomistics and continua. A key feature of the BSM is a non-reflecting atomistic interfacial condition which relies on a time history integral. In this work, we present a practical review of the relevant theory as well as a new algorithm used in the determination of the kernel function of the time history integral. We also provide a detailed description of the random displacement terms from the interfacial condition, which are required for finite temperature BSM simulations.

[1]  Eduard G. Karpov,et al.  A Green's function approach to deriving non‐reflecting boundary conditions in molecular dynamics simulations , 2005 .

[2]  T. Belytschko,et al.  A bridging domain method for coupling continua with molecular dynamics , 2004 .

[3]  L. S. Kothari,et al.  introduction to lattice dynamics , 1972 .

[4]  Thomas Y. Hou,et al.  A pseudo-spectral multiscale method: Interfacial conditions and coarse grid equations , 2006, J. Comput. Phys..

[5]  W. Cai,et al.  Minimizing boundary reflections in coupled-domain simulations. , 2000, Physical review letters.

[6]  William T. Weeks,et al.  Numerical Inversion of Laplace Transforms Using Laguerre Functions , 1966, JACM.

[7]  J. D. Doll,et al.  Generalized Langevin equation approach for atom/solid-surface scattering: General formulation for classical scattering off harmonic solids , 1976 .

[8]  Jonathan A. Zimmerman,et al.  Calculation of stress in atomistic simulation , 2004 .

[9]  Noam Bernstein,et al.  Spanning the length scales in dynamic simulation , 1998 .

[10]  Min Zhou,et al.  A new look at the atomic level virial stress: on continuum-molecular system equivalence , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[11]  William A. Curtin,et al.  A coupled atomistic/continuum model of defects in solids , 2002 .

[12]  Berend Smit,et al.  Molecular Dynamics Simulations , 2002 .

[13]  Eduard G. Karpov,et al.  Initial tension in randomly disordered periodic lattices , 2003 .

[14]  J. Tinsley Oden,et al.  MultiScale Modeling of Physical Phenomena: Adaptive Control of Models , 2006, SIAM J. Sci. Comput..

[15]  Eduard G. Karpov,et al.  Molecular dynamics boundary conditions for regular crystal lattices , 2004 .

[16]  Jacob Fish,et al.  Discrete-to-continuum bridging based on multigrid principles , 2004 .

[17]  Gregory J. Wagner,et al.  Coupling of atomistic and continuum simulations using a bridging scale decomposition , 2003 .

[18]  Harold S. Park,et al.  A temperature equation for coupled atomistic/continuum simulations , 2004 .

[19]  Jimmie D. Doll,et al.  Generalized Langevin equation approach for atom/solid-surface scattering: Inelastic studies , 1975 .

[20]  Harold S. Park,et al.  Non‐reflecting boundary conditions for atomistic, continuum and coupled atomistic/continuum simulations , 2005 .

[21]  E Weinan,et al.  A dynamic atomistic-continuum method for the simulation of crystalline materials , 2001 .

[22]  E Weinan,et al.  Multiscale modeling of the dynamics of solids at finite temperature , 2005 .

[23]  Ronald E. Miller,et al.  The Quasicontinuum Method: Overview, applications and current directions , 2002 .

[24]  J. D. Doll,et al.  Generalized Langevin equation approach for atom/solid‐surface scattering: Collinear atom/harmonic chain model , 1974 .

[25]  Thomas Y. Hou,et al.  A mathematical framework of the bridging scale method , 2006 .

[26]  Harold S. Park,et al.  An introduction and tutorial on multiple-scale analysis in solids , 2004 .

[27]  Harold S. Park,et al.  An introduction to computational nanomechanics and materials , 2004 .

[28]  Emily A. Carter,et al.  Density-functional-theory-based local quasicontinuum method: Prediction of dislocation nucleation , 2004 .

[29]  J. Q. Broughton,et al.  Concurrent coupling of length scales: Methodology and application , 1999 .

[30]  Harold S. Park,et al.  The bridging scale for two-dimensional atomistic/continuum coupling , 2005 .

[31]  M. Ortiz,et al.  Quasicontinuum analysis of defects in solids , 1996 .

[32]  Harold S. Park,et al.  A phonon heat bath approach for the atomistic and multiscale simulation of solids , 2007 .

[33]  Kenny S. Crump,et al.  Numerical Inversion of Laplace Transforms Using a Fourier Series Approximation , 1976, J. ACM.

[34]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .

[35]  C. Kittel Introduction to solid state physics , 1954 .

[36]  Harold S. Park,et al.  Three-dimensional bridging scale analysis of dynamic fracture , 2005 .

[37]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[38]  Ronald E. Miller,et al.  Atomistic/continuum coupling in computational materials science , 2003 .

[39]  Min Zhou Thermomechanical continuum representation of atomistic deformation at arbitrary size scales , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[40]  William A. Curtin,et al.  Coupled Atomistic/Discrete Dislocation Simulations of Nanoindentation at Finite Temperature , 2005 .