Predictions of H-mode performance in ITER

Time-dependent integrated predictive modelling is carried out using the PTRANSP code to predict fusion power and parameters such as alpha particle density and pressure in ITER H-mode plasmas. Auxiliary heating by negative ion neutralbeaminjectionandion-cyclotronheatingofHe 3 minorityionsaremodelled,andtheGLF23transportmodelis used in the prediction of the evolution of plasma temperature profiles. Effects of beam steering, beam torque, plasma rotation, beam current drive, pedestal temperatures, sawtooth oscillations, magnetic diffusion and accumulation of He ash are treated self-consistently. Variations in assumptions associated with physics uncertainties for standard base-line DT H-mode plasmas (with Ip = 15MA, BTF = 5.3T and Greenwald fraction = 0.86) lead to a range of predictions for DT fusion power PDT and quasi-steady state fusion QDT (≡PDT/Paux). Typical predictions assuming Paux = 50‐53MW yield PDT = 250‐720MW and QDT = 5‐14. In some cases where Paux is ramped down or shut off after initial flat-top conditions, quasi-steady QDT can be considerably higher, even infinite. Adverse physics assumptions such as the existence of an inward pinch of the helium ash and an ash recycling coefficient approaching unity lead to very low values for PDT. Alternative scenarios with different heating and reduced performance regimes are also considered including plasmas with only H or D isotopes, DT plasmas with toroidal field reduced 10% or 20% and discharges with reduced beam voltage. In full-performance D-only discharges, tritium burn up is predicted to generate central tritium densities up to 10 16 m −3 and DT neutron rates up to 5 ×10 16 s −1 , compared with the DD neutron rates of 6 × 10 17 s −1 . Predictions with the toroidal field reduced 10% or 20% below the planned 5.3T and keeping the same q98, Greenwald fraction and βn indicate that the fusion yield PDT and QDT will be lower by about a factor of two (scaling as B 3.5 ).

[1]  J. W. Stearns,et al.  CHARGE-STATE DEPENDENCE OF ELECTRON LOSS FROM H BY COLLISIONS WITH HEAVY, HIGHLY STRIPPED IONS , 1978 .

[2]  D. McCune,et al.  New techniques for calculating heat and particle source rates due to neutral beam injection in axisymmetric tokamaks , 1981 .

[3]  An inverse variable technique in the MHD-equilibrium problem , 1985 .

[4]  S. Jardin,et al.  Dynamic modeling of transport and positional control of tokamaks , 1986 .

[5]  Douglass E. Post,et al.  Penetration of energetic neutral beams into fusion plasmas , 1989 .

[6]  J. Cordey,et al.  Extrapolation of the high-performance JET plasmas to D-T operation , 1991 .

[7]  A. T. Ramsey,et al.  Simulations of deuterium-tritium experiments in TFTR , 1992 .

[8]  Stephen C. Jardin,et al.  Dynamic modelling of lower hybrid current drive , 1994 .

[9]  R. Budny,et al.  A STANDARD DT SUPERSHOT SIMULATION , 1994 .

[10]  M. Rosenbluth,et al.  Model for the sawtooth period and amplitude , 1996 .

[11]  R. Waltz,et al.  A gyro-Landau-fluid transport model , 1997 .

[12]  Akira Sakasai,et al.  Enhancement in the Ionization Cross-Section of a 350 keV Hydrogen Beam on JT-60U Plasmas , 1997 .

[13]  W. Houlberg,et al.  Bootstrap current and neoclassical transport in tokamaks of arbitrary collisionality and aspect ratio , 1997 .

[14]  Akira Sakasai,et al.  Attenuation of high-energy neutral hydrogen beams in high-density plasmas , 1998 .

[15]  R. J. Hawryluk,et al.  Results from deuterium-tritium tokamak confinement experiments , 1997 .

[16]  Marco Brambilla,et al.  Numerical simulation of ion cyclotron waves in tokamak plasmas , 1999 .

[17]  F. G. Rimini,et al.  Isotope scaling of the H mode power threshold on JET , 1999 .

[18]  A. Pletzer,et al.  Theory of perturbed equilibria for solving the Grad–Shafranov equation , 1999 .

[19]  W. Kerner,et al.  High fusion performance from deuterium-tritium plasmas in JET , 1999 .

[20]  Joseph A. Snipes,et al.  Latest results on the H-mode threshold using the international H-mode threshold database , 2000 .

[21]  Neutral beam stopping and emission in fusion plasmas I: deuterium beams , 2000 .

[22]  O. Naito,et al.  Heating and non-inductive current drive by negative ion based NBI in JT-60U , 2000 .

[23]  R. Budny,et al.  Local Transport in Joint European Tokamak Edge-Localized, High-Confinement Mode Plasmas with H, D, DT, and T Isotopes , 2000 .

[24]  P. Barabaschi,et al.  ITER: opportunity of burning plasma studies , 2001 .

[25]  J. Kinsey,et al.  Dynamic modeling of stepwise internal transport barrier formation in DIII-D negative-central-shear discharges. , 2001, Physical review letters.

[26]  D. J. Campbell,et al.  The physics of the International Thermonuclear Experimental Reactor FEAT , 2001 .

[27]  O. Sauter,et al.  Control of neoclassical tearing modes by sawtooth control. , 2002, Physical review letters.

[28]  F. Ryter,et al.  Progress of the international H-mode power threshold database activity , 2002 .

[29]  Jerry M. Kinsey,et al.  BURNING PLASMA PROJECTIONS USING DRIFT WAVE TRANSPORT MODELS AND SCALINGS FOR THE H-MODE PEDESTAL , 2002 .

[30]  R. V. Budny,et al.  Fusion alpha parameters in tokamaks with high DT fusion rates , 2002 .

[31]  Arnold H. Kritz,et al.  Integrated predictive modelling simulations of burning plasma experiment designs , 2003 .

[32]  M. Sugihara,et al.  LETTER TO THE EDITOR: Scaling of H-mode edge pedestal pressure for a Type-I ELM regime in tokamaks , 2003 .

[33]  R. E. Waltz,et al.  Burning Plasma Confinement Projections and Renormalization of the GLF23 Drift-Wave Transport Model , 2003 .

[34]  M. Sugihara,et al.  Comparison of ITER performance predicted by semi-empirical and theory-based transport models , 2003 .

[35]  G. Janeschitz,et al.  Core plasma operation consistent with SOL parameters in ITER , 2003 .

[36]  A. Loarte,et al.  Scaling laws for edge plasma parameters in ITER from two-dimensional edge modelling , 2003 .

[37]  Douglas McCune,et al.  Numerical techniques used in Neutral Beam Injection modules , 2004, Comput. Phys. Commun..

[38]  L. D. Pearlstein,et al.  The National Transport Code Collaboration Module Library , 2004, Comput. Phys. Commun..

[39]  R. Budny,et al.  Density peaking in low collisionality ELMy H-mode in JET , 2004 .

[40]  G. Bateman,et al.  Magnetohydrodynamic-calibrated edge-localized mode model in simulations of International Thermonuclear Experimental Reactor , 2005 .

[41]  Beam anisotropy effect on Alfvén eigenmode stability in ITER-like plasmas , 2005 .

[42]  K. Indireshkumar,et al.  Simulation and Analysis of the Hybrid Operating Mode in ITER , 2005, 21st IEEE/NPS Symposium on Fusion Engineering SOFE 05.

[43]  Density dependence of trace tritium transport in H-mode Joint European Torus plasma , 2005 .

[44]  G. Staebler,et al.  Predicted toroidal rotation enhancement of fusion power production in ITER , 2006 .

[45]  C. Kessel,et al.  Simulation of the hybrid and steady state advanced operating modes in ITER , 2007 .

[46]  Jet Efda Contributors,et al.  The physics of sawtooth stabilization , 2007 .

[47]  Tomonori Takizuka,et al.  Power requirement for accessing the H-mode in ITER , 2008 .

[48]  Stephen C. Jardin,et al.  On 1D diffusion problems with a gradient-dependent diffusion coefficient , 2008, J. Comput. Phys..

[49]  T. Fujita,et al.  The 2008 Public Release of the International Multi-tokamak Confinement Profile Database , 2008 .