The lateral line microcosmos.

The lateral-line system is a simple sensory system comprising a number of discrete sense organs, the neuromasts, distributed over the body of fish and amphibians in species-specific patterns. Its development involves fundamental biological processes such as long-range cell migration, planar cell polarity, regeneration, and post-embryonic remodeling. These aspects have been extensively studied in amphibians by experimental embryologists, but it is only recently that the genetic bases of this development have been explored in zebrafish. This review discusses progress made over the past few years in this field.

[1]  N. Holder,et al.  Cell turnover in neuromasts of zebrafish larvae , 2000, Hearing Research.

[2]  R. Winklbauer,et al.  Development of the lateral line system in Xenopus laevis. I. Normal development and cell movement in the supraorbital system. , 1983, Journal of embryology and experimental morphology.

[3]  Darren Gilmour,et al.  Organizing moving groups during morphogenesis. , 2006, Current opinion in cell biology.

[4]  C. Kimmel,et al.  Stages of embryonic development of the zebrafish , 1995, Developmental dynamics : an official publication of the American Association of Anatomists.

[5]  R. Bryson-Richardson,et al.  Met and Hgf signaling controls hypaxial muscle and lateral line development in the zebrafish , 2004, Development.

[6]  M. Halpern,et al.  Characterization of myelination in the developing zebrafish , 2002, Glia.

[7]  C. Nüsslein-Volhard,et al.  Migration and Function of a Glial Subtype in the Vertebrate Peripheral Nervous System , 2002, Neuron.

[8]  J. Y. Kuwada,et al.  Chemokine signaling regulates sensory cell migration in zebrafish. , 2004, Developmental biology.

[9]  V. Korzh,et al.  Tol2 transposon‐mediated enhancer trap to identify developmentally regulated zebrafish genes in vivo , 2004, Developmental dynamics : an official publication of the American Association of Anatomists.

[10]  Jiakun Song,et al.  Damage and recovery of hair cells in fish canal (but not superficial) neuromasts after gentamicin exposure , 1995, Hearing Research.

[11]  A. J. Hudspeth,et al.  How the ear's works work , 1989, Nature.

[12]  S. Dijkgraaf THE FUNCTIONING and SIGNIFICANCE OF THE LATERAL‐LINE ORGANS , 1963, Biological reviews of the Cambridge Philosophical Society.

[13]  A. Hudspeth,et al.  Directional cell migration establishes the axes of planar polarity in the posterior lateral-line organ of the zebrafish. , 2004, Developmental cell.

[14]  Tanya T Whitfield Lateral Line: Precocious Phenotypes and Planar Polarity , 2005, Current Biology.

[15]  A. Ghysen,et al.  Second-order projection from the posterior lateral line in the early zebrafish brain , 2006, Neural Development.

[16]  J F Webb,et al.  Gross morphology and evolution of the mechanoreceptive lateral-line system in teleost fishes. , 1989, Brain, behavior and evolution.

[17]  A. Ghysen,et al.  Cell proliferation in the developing lateral line system of zebrafish embryos , 2005, Developmental dynamics : an official publication of the American Association of Anatomists.

[18]  D. Raible,et al.  Lateral line hair cell maturation is a determinant of aminoglycoside susceptibility in zebrafish (Danio rerio) , 2006, Hearing Research.

[19]  G. Schlosser Development and evolution of lateral line placodes in amphibians I. Development. , 2002, Zoology.

[20]  R. Winklbauer,et al.  Development of the lateral line system in Xenopus laevis. IV. Pattern formation in the supraorbital system. , 1985, Journal of embryology and experimental morphology.

[21]  Northcutt Rg,et al.  Evolution of Gnathostome Lateral Line Ontogenies , 1997 .

[22]  A. Ghysen,et al.  Control of cell migration in the zebrafish lateral line: Implication of the gene “Tumour‐Associated Calcium Signal Transducer,” tacstd , 2006, Developmental dynamics : an official publication of the American Association of Anatomists.

[23]  Nicolas Cubedo,et al.  Control of cell migration in the development of the posterior lateral line: antagonistic interactions between the chemokine receptors CXCR4 and CXCR7/RDC1 , 2007, BMC Developmental Biology.

[24]  R. G. Harrison Experimentelle Untersuchungen Über die Entwicklung der Sinnesorgane der Seitenlinie bei den Ampkibien , 1903 .

[25]  Jennifer A Zallen,et al.  Multicellular rosette formation links planar cell polarity to tissue morphogenesis. , 2006, Developmental cell.

[26]  T. Henrich,et al.  Mutations affecting the formation of posterior lateral line system in Medaka, Oryzias latipes , 2004, Mechanisms of Development.

[27]  W. K. Metcalfe Sensory neuron growth cones comigrate with posterior lateral line primordial cells in zebrafish , 1985, The Journal of comparative neurology.

[28]  P. Witten Enzyme histochemical characteristics of osteoblasts and mononucleated osteoclasts in a teleost fish with acellular bone (Oreochromis niloticus, Cichlidae) , 1997, Cell and Tissue Research.

[29]  A. Ghysen,et al.  Cell migration in the postembryonic development of the fish lateral line. , 2002, Development.

[30]  Darren Gilmour,et al.  Chemokine signaling mediates self-organizing tissue migration in the zebrafish lateral line. , 2006, Developmental cell.

[31]  D. Raible,et al.  Regulation of Latent Sensory Hair Cell Precursors by Glia in the Zebrafish Lateral Line , 2005, Neuron.

[32]  D'arcy W. Thompson On growth and form i , 1943 .

[33]  John C. Montgomery,et al.  The Enigmatic Lateral Line System , 1999 .

[34]  V. Ledent,et al.  Postembryonic development of the posterior lateral line in zebrafish. , 2002, Development.

[35]  A. Ghysen,et al.  Development of the zebrafish lateral line , 2004, Current Opinion in Neurobiology.

[36]  Eric Schabtach,et al.  Anatomy of the posterior lateral line system in young larvae of the zebrafish , 1985, The Journal of comparative neurology.

[37]  A. Hudspeth,et al.  A two-step mechanism underlies the planar polarization of regenerating sensory hair cells , 2006, Proceedings of the National Academy of Sciences.

[38]  M. Itoh,et al.  Expression of proneural and neurogenic genes in the zebrafish lateral line primordium correlates with selection of hair cell fate in neuromasts , 2001, Mechanisms of Development.

[39]  G. Schlosser Induction and specification of cranial placodes. , 2006, Developmental biology.

[40]  C. Nüsslein-Volhard,et al.  Mutations affecting the formation of the notochord in the zebrafish, Danio rerio. , 1996, Development.

[41]  A. Ghysen,et al.  Neuronal differences prefigure somatotopy in the zebrafish lateral line. , 2001, Development.

[42]  N. Gaiano,et al.  Radial ‘glial’ progenitors: neurogenesis and signaling , 2005, Current Opinion in Neurobiology.

[43]  A. Ghysen,et al.  Evolution of posterior lateral line development in fish and amphibians , 2004, Evolution & development.

[44]  S. Smith,et al.  Development of the mechanoreceptive lateral-line system in the axolotl: placode specification, guidance of migration, and the origin of neuromast polarity , 1990, Anatomy and Embryology.

[45]  G. Schlosser Development and evolution of lateral line placodes in amphibians. - II. Evolutionary diversification. , 2002, Zoology.

[46]  L. Stone Further experimental studies of the development of lateral‐line sense organs in amphibians observed in living preparations , 1937 .

[47]  D. Gilmour,et al.  The Chemokine SDF1a Coordinates Tissue Migration through the Spatially Restricted Activation of Cxcr7 and Cxcr4b , 2007, Current Biology.

[48]  M. Bronner‐Fraser,et al.  Vertebrate cranial placodes I. Embryonic induction. , 2001, Developmental biology.

[49]  J. Webb,et al.  Postembryonic development of the cranial lateral line canals and neuromasts in zebrafish , 2003, Developmental dynamics : an official publication of the American Association of Anatomists.

[50]  A. Hudspeth,et al.  Expression and phylogeny of claudins in vertebrate primordia , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[51]  A. Garcı́a-Bellido Cell proliferation in the attainment of constant sizes and shapes: the Entelechia model. , 1998, The International journal of developmental biology.

[52]  Douglas L. Jones,et al.  Distant touch hydrodynamic imaging with an artificial lateral line , 2006, Proceedings of the National Academy of Sciences.

[53]  R. Northcutt Evolution of gnathostome lateral line ontogenies. , 1997, Brain, behavior and evolution.

[54]  S. Dijkgraaf,et al.  A Short Personal Review of the History of Lateral Line Research , 1989 .

[55]  Kevin Wei,et al.  A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development , 2006, The Journal of experimental medicine.

[56]  J. Webb,et al.  Development of the supraorbital and mandibular lateral line canals in the cichlid, archocentrus nigrofasciatus , 2003, Journal of morphology.

[57]  T. Mcclanahan,et al.  Involvement of chemokine receptors in breast cancer metastasis , 2001, Nature.

[58]  M. Allende,et al.  Regeneration in zebrafish lateral line neuromasts: Expression of the neural progenitor cell marker sox2 and proliferation‐dependent and‐independent mechanisms of hair cell renewal , 2007, Developmental neurobiology.

[59]  A. Ghysen,et al.  Molecular basis of cell migration in the fish lateral line: Role of the chemokine receptor CXCR4 and of its ligand, SDF1 , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[60]  C. Nüsslein-Volhard,et al.  Towing of sensory axons by their migrating target cells in vivo , 2004, Nature Neuroscience.

[61]  A. Ghysen,et al.  Proneural gene requirement for hair cell differentiation in the zebrafish lateral line. , 2006, Developmental biology.

[62]  A. Hudspeth,et al.  Supernumerary neuromasts in the posterior lateral line of zebrafish lacking peripheral glia. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[63]  F. Rosa,et al.  Mechano-sensory organ regeneration in adults: The zebrafish lateral line as a model , 2006, Molecular and Cellular Neuroscience.

[64]  J. Hjort INSTITUTE OF MARINE RESEARCH BERGEN, NORWAY , 1998 .

[65]  J. García-Verdugo,et al.  Radial glia give rise to adult neural stem cells in the subventricular zone. , 2004, Proceedings of the National Academy of Sciences of the United States of America.