Modeling of Enhanced Electromagnetic Fields in Plasmonic Nanostructures

[1]  George C Schatz,et al.  Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays. , 2004, The Journal of chemical physics.

[2]  M. Meier,et al.  Enhanced fields on large metal particles: dynamic depolarization. , 1983, Optics letters.

[3]  Prashant K. Jain,et al.  Plasmonic coupling in noble metal nanostructures , 2010 .

[4]  D. Astruc,et al.  Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. , 2004, Chemical reviews.

[5]  George C Schatz,et al.  Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes. , 2004, The Journal of chemical physics.

[6]  D. Bedeaux,et al.  The polarizability of a truncated sphere on a substrate II , 1987 .

[7]  A. Fetter,et al.  Electrodynamics of a layered electron gas. I. Single layer , 1973 .

[8]  T. Pal,et al.  Silver nanoparticle aggregate formation by a photochemical method and its application to SERS analysis , 1999 .

[9]  J. Hafner,et al.  Localized surface plasmon resonance sensors. , 2011, Chemical reviews.

[10]  Karamjeet Arya,et al.  Scattering T-matrix theory in wave-vector space for surface-enhanced Raman scattering in clusters of nanoscale spherical metal particles , 2006 .

[11]  V. Kravets,et al.  Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles. , 2008, Physical review letters.

[12]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[13]  Wei Qian,et al.  Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: a potential cancer diagnostic marker. , 2007, Nano letters.

[14]  P. Denti,et al.  Radiation torque and force on optically trapped linear nanostructures. , 2008, Physical review letters.

[15]  Duncan Graham,et al.  Surface-enhanced Raman scattering , 1998 .

[16]  E. Lidorikis,et al.  Theory of plasmonic near-field enhanced absorption in solar cells , 2011 .

[17]  Y. Okada Numerical simulations of light scattering and absorption characteristics of aggregates , 2010 .

[18]  Emil Prodan,et al.  Quantum description of the plasmon resonances of a nanoparticle dimer. , 2009, Nano letters.

[19]  A. Borisov,et al.  Robust subnanometric plasmon ruler by rescaling of the nonlocal optical response. , 2013, Physical review letters.

[20]  Garnett W. Bryant,et al.  Metal‐nanoparticle plasmonics , 2008 .

[21]  J. Vlieger,et al.  Light scattering by a sphere on a substrate , 1986 .

[22]  Kort Travis,et al.  Controlled assembly of biodegradable plasmonic nanoclusters for near-infrared imaging and therapeutic applications. , 2010, ACS nano.

[23]  P. Waterman,et al.  SYMMETRY, UNITARITY, AND GEOMETRY IN ELECTROMAGNETIC SCATTERING. , 1971 .

[24]  E. Lacaze,et al.  Substrate Effect on the Plasmon Resonance of Supported Flat Silver Nanoparticles , 2011 .

[25]  Rosalba Saija,et al.  Optical trapping of nonspherical particles in the T-matrix formalism , 2007 .

[26]  P. Denti,et al.  Macroscopic optical constants of a cloud of randomly oriented nonspherical scatterers , 1984 .

[27]  U. Kreibig,et al.  The limitation of electron mean free path in small silver particles , 1969 .

[28]  W. Barnes,et al.  Collective resonances in gold nanoparticle arrays. , 2008, Physical review letters.

[29]  Paolo Denti,et al.  Multiple electromagnetic scattering from a cluster of spheres , 1981 .

[30]  J. Pendry,et al.  Transformation-optics description of nonlocal effects in plasmonic nanostructures. , 2012, Physical review letters.

[31]  Rosalba Saija,et al.  Optical trapping calculations for metal nanoparticles. Comparison with experimental data for Au and Ag spheres. , 2009, Optics express.

[32]  Jeremy J. Baumberg,et al.  Revealing the quantum regime in tunnelling plasmonics , 2012, Nature.

[33]  M. Allegrini,et al.  Re-radiation enhancement in polarized surface-enhanced resonant Raman scattering of randomly oriented molecules on self-organized gold nanowires. , 2011, ACS nano.

[34]  Bruce T. Draine,et al.  The discrete-dipole approximation and its application to interstellar graphite grains , 1988 .

[35]  K. Alexopoulos,et al.  Observation of Radiative Decay of Surface Plasmons in Small Silver Particles , 1972 .

[36]  J. Homola Surface plasmon resonance sensors for detection of chemical and biological species. , 2008, Chemical reviews.

[37]  Jaime Gómez Rivas,et al.  Universal scaling of the figure of merit of plasmonic sensors. , 2011, ACS nano.

[38]  L. Liz‐Marzán,et al.  Modelling the optical response of gold nanoparticles. , 2008, Chemical Society reviews.

[39]  R. Barrera,et al.  Substrate effects on the optical properties of spheroidal nanoparticles , 2000 .

[40]  E. Purcell,et al.  Scattering and Absorption of Light by Nonspherical Dielectric Grains , 1973 .

[41]  U. Krull,et al.  Localized surface plasmon resonance: nanostructures, bioassays and biosensing--a review. , 2011, Analytica chimica acta.

[42]  Alfons G. Hoekstra,et al.  The discrete dipole approximation: an overview and recent developments , 2007 .

[43]  Schmidt,et al.  Size dependence of the optical response of spherical sodium clusters. , 1995, Physical review letters.

[44]  Younan Xia,et al.  Shape-Controlled Synthesis of Gold and Silver Nanoparticles , 2002, Science.

[45]  The polarizability of a spheroidal particle on a substrate , 1987 .

[46]  Nikolai G. Khlebtsov,et al.  Optical properties and biomedical applications of plasmonic nanoparticles , 2010 .

[47]  R. Dasari,et al.  Surface-enhanced Raman scattering and biophysics , 2001 .

[48]  B. Draine,et al.  Application of fast-Fourier-transform techniques to the discrete-dipole approximation. , 1991, Optics letters.

[49]  E. Schonbrun,et al.  Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays , 2008 .

[50]  J. Hafner,et al.  Plasmon resonances of a gold nanostar. , 2007, Nano letters.

[51]  James P. Gordon,et al.  Radiation Damping in Surface-Enhanced Raman Scattering , 1982 .

[52]  M. Stockman Nanoplasmonics: past, present, and glimpse into future. , 2011, Optics express.

[53]  Akira Kinbara,et al.  Optical effect of the substrate on the anomalous absorption of aggregated silver films , 1974 .

[54]  Colby A. Foss,et al.  The Effect of Mutual Orientation on the Spectra of Metal Nanoparticle Rod−Rod and Rod−Sphere Pairs , 2002 .

[55]  F. D. Abajo,et al.  Spatial Nonlocality in the Optical Response of Metal Nanoparticles , 2011 .

[56]  J. Hafner,et al.  Optical properties of star-shaped gold nanoparticles. , 2006, Nano letters.

[57]  Logan K. Ausman,et al.  Methods for describing the electromagnetic properties of silver and gold nanoparticles. , 2008, Accounts of chemical research.

[58]  A. Jorio,et al.  Mechanism of near-field Raman enhancement in two-dimensional systems , 2012 .

[59]  F. Golmar,et al.  Resolving the electromagnetic mechanism of surface-enhanced light scattering at single hot spots , 2012, Nature Communications.

[60]  Ari Sihvola,et al.  Dielectric polarizability of circular cylinder , 2005 .

[61]  S. Xiao,et al.  Surface-enhanced Raman spectroscopy: nonlocal limitations. , 2012, Optics letters.

[62]  Alexander Urich,et al.  Silver nanoisland enhanced Raman interaction in graphene , 2012 .

[63]  Moreno Meneghetti,et al.  Plasmon-enhanced optical trapping of gold nanoaggregates with selected optical properties. , 2011, ACS nano.

[64]  B. Peterson,et al.  T matrix for electromagnetic scattering from an arbitrary number of scatterers and representations of E(3) , 1973 .

[65]  Vollmer,et al.  Width of cluster plasmon resonances: Bulk dielectric functions and chemical interface damping. , 1993, Physical review. B, Condensed matter.

[66]  A. Jorio,et al.  Mechanism of near-field Raman enhancement in one-dimensional systems. , 2009, Physical review letters.

[67]  Paul Mulvaney,et al.  Gold nanorod extinction spectra , 2006 .

[68]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[69]  Eric C Le Ru,et al.  Investigation of particle shape and size effects in SERS using T-matrix calculations. , 2009, Physical chemistry chemical physics : PCCP.

[70]  Antti-Pekka Eskelinen,et al.  Plasmonic surface lattice resonances at the strong coupling regime. , 2014, Nano letters.

[71]  P. Denti,et al.  Optical properties of a dispersion of anisotropic particles with non-randomly distributed orientations. The case of atmospheric ice crystals , 2001 .

[72]  Richard K. Chang,et al.  Local fields at the surface of noble-metal microspheres , 1981 .

[73]  Bernhard Lamprecht,et al.  Optical properties of two interacting gold nanoparticles , 2003 .

[74]  P. Nordlander,et al.  A Hybridization Model for the Plasmon Response of Complex Nanostructures , 2003, Science.

[75]  Martijn Wubs,et al.  Modified field enhancement and extinction by plasmonic nanowire dimers due to nonlocal response. , 2011, Optics express.

[76]  N. Khlebtsov T-matrix method in plasmonics: An overview , 2013 .

[77]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[78]  Michael I. Mishchenko,et al.  Calculation of the T matrix and the scattering matrix for ensembles of spheres , 1996 .

[79]  J. Dionne,et al.  Quantum plasmon resonances of individual metallic nanoparticles , 2012, Nature.

[80]  M. Moskovits Surface-enhanced spectroscopy , 1985 .

[81]  Y. Lo,et al.  Multiple scattering of EM waves by spheres part I--Multipole expansion and ray-optical solutions , 1971 .

[82]  Jiří Homola,et al.  Sensing properties of lattice resonances of 2D metal nanoparticle arrays: an analytical model. , 2013, Optics express.

[83]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[84]  P. Nordlander,et al.  Plasmons in strongly coupled metallic nanostructures. , 2011, Chemical reviews.

[85]  Thomas Wriedt,et al.  Light scattering simulation for the characterization of sintered silver nanoparticles , 2008 .

[86]  R. Wannemacher,et al.  Failure of local Mie theory: optical spectra of colloidal aggregates , 2001 .

[87]  Martijn Wubs,et al.  Blueshift of the surface plasmon resonance in silver nanoparticles: substrate effects. , 2013, Optics express.

[88]  P. Denti,et al.  Theoretical description of dynamic light scattering from an assembly of large axially symmetric particles , 1993 .

[89]  Louis E. Brus,et al.  Ag Nanocrystal Junctions as the Site for Surface-Enhanced Raman Scattering of Single Rhodamine 6G Molecules , 2000 .

[90]  Vadim A. Markel Coupled-dipole Approach to Scattering of Light from a One-dimensional Periodic Dipole Structure , 1993 .

[91]  Jennifer A. Dionne,et al.  Observation of quantum tunneling between two plasmonic nanoparticles. , 2013, Nano letters.

[92]  E. Lidorikis Modeling of enhanced absorption and Raman scattering caused by plasmonic nanoparticle near fields , 2012 .

[93]  Elefterios Lidorikis,et al.  Surface-enhanced Raman spectroscopy of graphene. , 2010, ACS nano.

[94]  Richard W. Taylor,et al.  Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril "glue". , 2011, ACS nano.

[95]  Rosalba Saija,et al.  General reflection rule for electromagnetic multipole fields on a plane interface , 1997 .

[96]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[97]  Moreno Meneghetti,et al.  Manipulation and Raman Spectroscopy with Optically Trapped Metal Nanoparticles Obtained by Pulsed Laser Ablation in Liquids , 2011 .

[98]  Kenjiro Miyano,et al.  Resonant light scattering from metal nanoparticles: Practical analysis beyond Rayleigh approximation , 2003 .

[99]  L. Liz‐Marzán,et al.  Colloidal silver nanoplates. State of the art and future challenges , 2008 .

[100]  F. G. D. Abajo Colloquium: Light scattering by particle and hole arrays , 2007, 0903.1671.

[101]  Aeneas Wiener,et al.  Surface plasmons and nonlocality: a simple model. , 2013, Physical review letters.

[102]  R. T. Hill,et al.  Probing the Ultimate Limits of Plasmonic Enhancement , 2012, Science.

[103]  Javier Aizpurua,et al.  Bridging quantum and classical plasmonics with a quantum-corrected model , 2012, Nature Communications.

[104]  Emil Prodan,et al.  Plasmon Hybridization in Nanoparticle Dimers , 2004 .

[105]  N. Khlebtsov,et al.  Orientational averaging of light-scattering observables in the J-matrix approach. , 1992, Applied optics.