A Comparison of High Order Interpolation Nodes for the Pyramid
暂无分享,去创建一个
[1] Alvise Sommariva,et al. Computing Multivariate Fekete and Leja Points by Numerical Linear Algebra , 2010, SIAM J. Numer. Anal..
[2] Moshe Dubiner. Spectral methods on triangles and other domains , 1991 .
[3] Jan S. Hesthaven,et al. From Electrostatics to Almost Optimal Nodal Sets for Polynomial Interpolation in a Simplex , 1998 .
[4] Alvise Sommariva,et al. Computing approximate Fekete points by QR factorizations of Vandermonde matrices , 2009, Comput. Math. Appl..
[5] J. Hesthaven,et al. Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .
[6] Max Gunzburger,et al. Optimal Point Sets for Total Degree Polynomial Interpolation in Moderate Dimensions , 2014 .
[7] S. D. Marchi,et al. Polynomial approximation on pyramids, cones and solids of rotation ∗ , 2013 .
[8] G. Bedrosian. Shape functions and integration formulas for three‐dimensional finite element analysis , 1992 .
[9] Claus-Dieter Munz,et al. Polymorphic nodal elements and their application in discontinuous Galerkin methods , 2009, J. Comput. Phys..
[10] Nilima Nigam,et al. Numerical integration for high order pyramidal finite elements , 2010, 1003.0495.
[11] Ivo Babuška,et al. The optimal symmetrical points for polynomial interpolation of real functions in the tetrahedron , 1995 .
[12] Nilima Nigam,et al. High-order conforming finite elements on pyramids , 2012 .
[13] A. Patera. A spectral element method for fluid dynamics: Laminar flow in a channel expansion , 1984 .
[14] Alvise Sommariva,et al. Geometric weakly admissible meshes, discrete least squares approximations and approximate Fekete points , 2011, Math. Comput..
[15] Dongbin Xiu,et al. Constructing Nested Nodal Sets for Multivariate Polynomial Interpolation , 2013, SIAM J. Sci. Comput..
[16] G. Karniadakis,et al. Spectral/hp Element Methods for Computational Fluid Dynamics , 2005 .
[17] Mark A. Taylor,et al. An Algorithm for Computing Fekete Points in the Triangle , 2000, SIAM J. Numer. Anal..
[18] Francesca Rapetti,et al. On the generation of symmetric Lebesgue-like points in the triangle , 2012, J. Comput. Appl. Math..
[19] P. Fischer,et al. High-Order Methods for Incompressible Fluid Flow , 2002 .
[20] M. Roth,et al. Nodal configurations and voronoi tessellations for triangular spectral elements , 2005 .
[21] Laurent Sorber,et al. Approximating optimal point configurations for multivariate polynomial interpolation , 2013 .
[22] George Em Karniadakis,et al. Spectral / hp Methods For Elliptic Problems on Hybrid Grids , 1998 .
[23] Tim Warburton,et al. An explicit construction of interpolation nodes on the simplex , 2007 .
[24] Simon P. Walker,et al. Polynomial basis functions on pyramidal elements , 2007 .
[25] Marc Duruflé,et al. Higher-order Finite Elements for Hybrid Meshes Using New Nodal Pyramidal Elements , 2010, J. Sci. Comput..
[26] Christophe Geuzaine,et al. A frontal approach to hex-dominant mesh generation , 2014, Adv. Model. Simul. Eng. Sci..
[27] Maciej Paszyński,et al. Computing with hp-ADAPTIVE FINITE ELEMENTS: Volume II Frontiers: Three Dimensional Elliptic and Maxwell Problems with Applications , 2007 .
[28] Conforming discretizations on tetrahedrons , pyramids , prisms and hexahedrons , 2007 .
[29] D. P. Flemming. Numerical Integration over Simplexes and Cones , 2010 .
[30] Alvise Sommariva,et al. Computing Fekete and Lebesgue points: Simplex, square, disk , 2012, J. Comput. Appl. Math..