A Comparison of High Order Interpolation Nodes for the Pyramid

The use of pyramid elements is crucial to the construction of efficient hex-dominant meshes [M. Bergot, G. Cohen, and M. Durufle, J. Sci. Comput., 42 (2010), pp. 345--381]. For conforming nodal finite element methods with mixed element types, it is advantageous for nodal distributions on the faces of the pyramid to match those on the faces and edges of hexahedra and tetrahedra. We adapt existing procedures for constructing optimized tetrahedral nodal sets for high order interpolation to the pyramid with constrained face nodes, including two generalizations of the explicit warp and blend construction of nodes on the tetrahedron [T. Warburton, J. Engrg. Math., 56 (2006), pp. 247--262]. Comparisons between nodal sets show that the lowest Lebesgue constants are given by warp and blend nodes for order $N\leq 7$ and Fekete nodes for $N>7$, though numerical experiments show little variation in the conditioning and accuracy of all surveyed nonequidistant points.

[1]  Alvise Sommariva,et al.  Computing Multivariate Fekete and Leja Points by Numerical Linear Algebra , 2010, SIAM J. Numer. Anal..

[2]  Moshe Dubiner Spectral methods on triangles and other domains , 1991 .

[3]  Jan S. Hesthaven,et al.  From Electrostatics to Almost Optimal Nodal Sets for Polynomial Interpolation in a Simplex , 1998 .

[4]  Alvise Sommariva,et al.  Computing approximate Fekete points by QR factorizations of Vandermonde matrices , 2009, Comput. Math. Appl..

[5]  J. Hesthaven,et al.  Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .

[6]  Max Gunzburger,et al.  Optimal Point Sets for Total Degree Polynomial Interpolation in Moderate Dimensions , 2014 .

[7]  S. D. Marchi,et al.  Polynomial approximation on pyramids, cones and solids of rotation ∗ , 2013 .

[8]  G. Bedrosian Shape functions and integration formulas for three‐dimensional finite element analysis , 1992 .

[9]  Claus-Dieter Munz,et al.  Polymorphic nodal elements and their application in discontinuous Galerkin methods , 2009, J. Comput. Phys..

[10]  Nilima Nigam,et al.  Numerical integration for high order pyramidal finite elements , 2010, 1003.0495.

[11]  Ivo Babuška,et al.  The optimal symmetrical points for polynomial interpolation of real functions in the tetrahedron , 1995 .

[12]  Nilima Nigam,et al.  High-order conforming finite elements on pyramids , 2012 .

[13]  A. Patera A spectral element method for fluid dynamics: Laminar flow in a channel expansion , 1984 .

[14]  Alvise Sommariva,et al.  Geometric weakly admissible meshes, discrete least squares approximations and approximate Fekete points , 2011, Math. Comput..

[15]  Dongbin Xiu,et al.  Constructing Nested Nodal Sets for Multivariate Polynomial Interpolation , 2013, SIAM J. Sci. Comput..

[16]  G. Karniadakis,et al.  Spectral/hp Element Methods for Computational Fluid Dynamics , 2005 .

[17]  Mark A. Taylor,et al.  An Algorithm for Computing Fekete Points in the Triangle , 2000, SIAM J. Numer. Anal..

[18]  Francesca Rapetti,et al.  On the generation of symmetric Lebesgue-like points in the triangle , 2012, J. Comput. Appl. Math..

[19]  P. Fischer,et al.  High-Order Methods for Incompressible Fluid Flow , 2002 .

[20]  M. Roth,et al.  Nodal configurations and voronoi tessellations for triangular spectral elements , 2005 .

[21]  Laurent Sorber,et al.  Approximating optimal point configurations for multivariate polynomial interpolation , 2013 .

[22]  George Em Karniadakis,et al.  Spectral / hp Methods For Elliptic Problems on Hybrid Grids , 1998 .

[23]  Tim Warburton,et al.  An explicit construction of interpolation nodes on the simplex , 2007 .

[24]  Simon P. Walker,et al.  Polynomial basis functions on pyramidal elements , 2007 .

[25]  Marc Duruflé,et al.  Higher-order Finite Elements for Hybrid Meshes Using New Nodal Pyramidal Elements , 2010, J. Sci. Comput..

[26]  Christophe Geuzaine,et al.  A frontal approach to hex-dominant mesh generation , 2014, Adv. Model. Simul. Eng. Sci..

[27]  Maciej Paszyński,et al.  Computing with hp-ADAPTIVE FINITE ELEMENTS: Volume II Frontiers: Three Dimensional Elliptic and Maxwell Problems with Applications , 2007 .

[28]  Conforming discretizations on tetrahedrons , pyramids , prisms and hexahedrons , 2007 .

[29]  D. P. Flemming Numerical Integration over Simplexes and Cones , 2010 .

[30]  Alvise Sommariva,et al.  Computing Fekete and Lebesgue points: Simplex, square, disk , 2012, J. Comput. Appl. Math..