An Interval Observer for Discrete-Time SEIR Epidemic Models

This paper focuses on designing a state estimator for a discrete-time SEIR epidemic model of an influenza-like illness. It is assumed that only sets of admissible values are known for the model's disturbances, uncertainties and parameters, except for the time-varying transmission rate from the “susceptible” to the “exposed” stage, whose bounding values are unavailable. An interval observer is designed to estimate the set of possible values of the state, and a sufficient condition guaranteeing the asymptotic stability of the proposed estimator is formulated in terms of a linear matrix inequality. The performance of the proposed approach is demonstrated by numerical simulations.

[1]  Giles Hooker,et al.  Parameterizing state–space models for infectious disease dynamics by generalized profiling: measles in Ontario , 2011, Journal of The Royal Society Interface.

[2]  Herbert W. Hethcote,et al.  The Mathematics of Infectious Diseases , 2000, SIAM Rev..

[3]  Ronald E Mickens,et al.  Numerical integration of population models satisfying conservation laws: NSFD methods , 2007, Journal of biological dynamics.

[4]  Emilia Fridman,et al.  Delay-dependent positivity: Application to interval observers , 2015, 2015 European Control Conference (ECC).

[5]  M De la Sen,et al.  An observer-based vaccination control law for an SEIR epidemic model based on feedback linearization techniques for nonlinear systems , 2012 .

[6]  Andrei Korobeinikov,et al.  Global Properties of SIR and SEIR Epidemic Models with Multiple Parallel Infectious Stages , 2009, Bulletin of mathematical biology.

[7]  Eduardo Sontag,et al.  Output-to-state stability and detectability of nonlinear systems , 1997 .

[8]  Leonid M. Fridman,et al.  Interval estimation for LPV systems applying high order sliding mode techniques , 2012, Autom..

[9]  Morris W. Hirsch,et al.  Monotone maps: A review , 2005 .

[10]  N. Grassly,et al.  Mathematical models of infectious disease transmission , 2008, Nature Reviews Microbiology.

[11]  Denis V. Efimov,et al.  Interval estimation of sequestered infected erythrocytes in malaria patients , 2016, 2016 European Control Conference (ECC).

[12]  S. Rinaldi,et al.  Positive Linear Systems: Theory and Applications , 2000 .

[13]  Juan Jose Fallas-Monge,et al.  Combinatorial metaheuristics applied to infectious disease models , 2016, 2016 IEEE 36th Central American and Panama Convention (CONCAPAN XXXVI).

[14]  A. Iggidr,et al.  On the estimation of sequestered infected erythrocytes in Plasmodium falciparum malaria patients , 2014 .

[15]  Tarek Raïssi,et al.  A note on interval observer design for unknown input estimation , 2016, Int. J. Control.

[16]  Denis V. Efimov,et al.  Control of Nonlinear and LPV Systems: Interval Observer-Based Framework , 2013, IEEE Transactions on Automatic Control.

[17]  M. Keeling,et al.  Modeling Infectious Diseases in Humans and Animals , 2007 .

[18]  Denis V. Efimov,et al.  Design of interval observers for uncertain dynamical systems , 2016, Automation and Remote Control.

[19]  Denis V. Efimov,et al.  Design of interval observers for estimation and stabilization of discrete-time LPV systems , 2016, IMA J. Math. Control. Inf..

[20]  P. Barboza,et al.  Epidemiology of fatal cases associated with pandemic H1N1 influenza 2009. , 2009, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[21]  David L. Craft,et al.  Emergency response to a smallpox attack: The case for mass vaccination , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Zhidong Teng,et al.  Stability analysis in a class of discrete SIRS epidemic models , 2012 .

[23]  Nicholas G. Polson,et al.  Tracking Epidemics With Google Flu Trends Data and a State-Space SEIR Model , 2012, Journal of the American Statistical Association.

[24]  P. Olver Nonlinear Systems , 2013 .

[25]  Julien Marzat,et al.  Interval observer design for unknown input estimation of linear time-invariant discrete-time systems , 2017 .

[26]  M. Hirsch Systems of Differential Equations that are Competitive or Cooperative II: Convergence Almost Everywhere , 1985 .

[27]  Wilfrid Perruquetti,et al.  On interval observer design for time-invariant discrete-time systems , 2013, 2013 European Control Conference (ECC).

[28]  Denis V. Efimov,et al.  Stabilization of linear impulsive systems under dwell-time constraints: Interval observer-based framework , 2018, Eur. J. Control.

[29]  Asier Ibeas,et al.  Observer design for SEIR discrete-time epidemic models , 2014, 2014 13th International Conference on Control Automation Robotics & Vision (ICARCV).

[30]  Pierre-Alexandre Bliman,et al.  Interval observer for SIR epidemic model subject to uncertain seasonality , 2016 .

[31]  J. Gouzé,et al.  Interval observers for uncertain biological systems , 2000 .

[32]  W. O. Kermack,et al.  A contribution to the mathematical theory of epidemics , 1927 .