Design and analysis of a square spiral nano-rectenna for infrared energy harvest and conversion

We have designed a novel nano-rectenna composed of a square spiral nanoantenna and a rectifier (Au-TiOx-Ti diode) for harvesting infrared energy and its conversion. The three-dimensional frequency-domain electromagnetic field calculation software based on the finite element method is used at infrared frequencies (5~30 μm) to analyze the optoelectronic properties of the proposed nano-rectenna. The simulation results indicate that three types of resonance wavelengths and local field enhancement are significantly influenced by the geometric parameters of the square spiral nanoantenna, as well as the structure and composition of the dielectric layer. An output current of the designed nano-rectenna is approximately at tens of nA with an incident electric field intensity of 1 V/m. Moreover, the photoelectric conversion efficiency is calculated to reach about several percentages. The mechanism on the optoelectronic performance of the nano-rectenna is deeply discussed. As a result, the optimized structure may lead to important applications in infrared detectors, novel cell devices and integrated photonic circuits.

[1]  Naomi J. Halas,et al.  Photodetection with Active Optical Antennas , 2011, Science.

[2]  Javier Alda,et al.  Seebeck nanoantennas for the detection and characterization of infrared radiation. , 2014, Optics express.

[3]  Kin Hung Fung,et al.  Nonlinear optical response from arrays of Au bowtie nanoantennas. , 2011, Nano letters.

[4]  Luis Landesa,et al.  Method-of-moments formulation for the analysis of plasmonic nano-optical antennas. , 2011, Journal of the Optical Society of America. A, Optics, image science, and vision.

[5]  Atif Shamim,et al.  Design, Optimization and Fabrication of a 28.3 THz Nano-Rectenna for Infrared Detection and Rectification , 2014, Scientific Reports.

[6]  X. Ye,et al.  Study of strong dipole and quadrupole plasmon resonance in Ag nanorings antenna , 2015 .

[7]  Shu-Wei Chang,et al.  Coating effect on optical resonance of plasmonic nanobowtie antenna , 2010 .

[8]  Mario Dagenais,et al.  Solar spectrum rectification using nano-antennas and tunneling diodes , 2010, OPTO.

[9]  Weibin Chen,et al.  Beaming circularly polarized photons from quantum dots coupled with plasmonic spiral antenna. , 2012, Optics express.

[10]  Arnan Mitchell,et al.  Dielectric resonator nanoantennas at visible frequencies. , 2013, Optics express.

[11]  Sergey I. Bozhevolnyi,et al.  Gap-plasmon nanoantennas and bowtie resonators , 2012 .

[12]  Hannu Tenhunen,et al.  DESIGN AND FABRICATION OF WIDEBAND ARCHIMEDEAN SPIRAL ANTENNA BASED ULTRA- LOW COST \GREEN" MODULES FOR RFID SENSING AND WIRELESS APPLICATIONS , 2012 .

[13]  Carsten Rockstuhl,et al.  Spiral-type terahertz antennas and the manifestation of the Mushiake principle. , 2009, Optics express.

[14]  Bert Hecht,et al.  Evolutionary optimization of optical antennas. , 2012, Physical review letters.

[15]  K. Crozier,et al.  Vertical optical antennas integrated with spiral ring gratings for large local electric field enhancement and directional radiation. , 2011, Optics express.

[16]  H. Rothuizen,et al.  Nanometer thin-film Ni-NiO-Ni diodes for detection and mixing of 30 THz radiation , 1998 .

[17]  Ulf Peschel,et al.  Excitation of plasmonic gap waveguides by nanoantennas. , 2009, Optics express.

[18]  Antenna-enhanced optoelectronic probing of carbon nanotubes. , 2016, Nano letters.

[19]  A. C. Maggs,et al.  Local simulation algorithms for Coulomb interactions. , 2002 .

[20]  J. Liaw Analysis of a Bowtie Nanoantenna for the Enhancement of Spontaneous Emission , 2008, IEEE Journal of Selected Topics in Quantum Electronics.

[21]  R. J. Bell,et al.  Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. , 1985, Applied optics.

[22]  Prakash Periasamy,et al.  Metal-insulator-metal diodes: role of the insulator layer on the rectification performance. , 2013, Advanced materials.

[23]  Photoemission from Metal Nanoparticles , 2011, 1109.1869.

[24]  Ingrid Wilke,et al.  Nanometer thin-film Ni-NiO-Ni diodes for 30 THz radiation , 1994 .

[25]  L. Mescia,et al.  Design of optical antenna for solar energy collection , 2012 .

[26]  Saumil Joshi,et al.  High Performance Room Temperature Rectenna IR Detectors Using Graphene Geometric Diodes , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[27]  A. M. A. Sabaawi,et al.  Analysis and Modeling of Infrared Solar Rectennas , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[28]  Dejan S. Filipovic,et al.  Micro-Coaxial Fed 18 to 110 GHz Planar Log-Periodic Antennas With RF Transitions , 2014, IEEE Transactions on Antennas and Propagation.

[29]  C. Wang,et al.  Vibrational and thermal properties of small diameter silicon nanowires , 2010 .

[30]  Scott Dhuey,et al.  Probe-sample optical interaction: size and wavelength dependence in localized plasmon near-field imaging. , 2013, Optics express.

[31]  Xiaoping Zhou,et al.  OPTICAL PROPERTIES AND PLASMON RESONANCE OF COUPLED GOLD NANOSHELL ARRAYS , 2011 .

[32]  S. Clima,et al.  High-Performance Metal-Insulator-Metal Tunnel Diode Selectors , 2014, IEEE Electron Device Letters.

[33]  Javier Alda,et al.  Conversion efficiency of broad-band rectennas for solar energy harvesting applications. , 2013, Optics express.

[34]  Paolo Nenzi,et al.  Electric Field Enhancement in 3-D Tapered Helix Antenna for Terahertz Applications , 2014, IEEE Transactions on Terahertz Science and Technology.

[35]  D. Gramotnev,et al.  Plasmonics beyond the diffraction limit , 2010 .

[36]  Harald Giessen,et al.  Nanoantenna-enhanced gas sensing in a single tailored nanofocus , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[37]  Garnett W. Bryant,et al.  Optical properties of coupled metallic nanorods for field-enhanced spectroscopy , 2005 .

[38]  J A Bean,et al.  Performance Optimization of Antenna-Coupled ${\rm Al}/{\rm AlO}_{x}/{\rm Pt}$ Tunnel Diode Infrared Detectors , 2011, IEEE Journal of Quantum Electronics.

[39]  Viktoriia E. Babicheva,et al.  Enhanced Electron Photoemission by Collective Lattice Resonances in Plasmonic Nanoparticle-Array Photodetectors and Solar Cells , 2013, Plasmonics.

[40]  Javier Alda,et al.  The effect of metal dispersion on the resonance of antennas at infrared frequencies , 2009 .

[41]  F. J. González,et al.  Comparison of dipole, bowtie, spiral and log-periodic IR antennas , 2005 .

[42]  K. A. Bachman,et al.  Spiral plasmonic nanoantennas as circular polarization transmission filters. , 2012, Optics express.

[43]  F. J. González,et al.  Seebeck nanoantennas for solar energy harvesting , 2014, 1408.6304.

[44]  Ji-Hun Kang,et al.  Local capacitor model for plasmonic electric field enhancement , 2009, CLEO/QELS: 2010 Laser Science to Photonic Applications.