Design and analysis of a square spiral nano-rectenna for infrared energy harvest and conversion
暂无分享,去创建一个
Hu Haifeng | Hu Haifeng | Kai Wang | Lu Shan | Lingju Guo | Zhang Tao | Han Yunzhong | Zhou Aosong | Tao He | T. He | Lingju Guo | Kai Wang | Lu Shan | Zhang Tao | Han Yun-zhong | Zhou Aosong
[1] Naomi J. Halas,et al. Photodetection with Active Optical Antennas , 2011, Science.
[2] Javier Alda,et al. Seebeck nanoantennas for the detection and characterization of infrared radiation. , 2014, Optics express.
[3] Kin Hung Fung,et al. Nonlinear optical response from arrays of Au bowtie nanoantennas. , 2011, Nano letters.
[4] Luis Landesa,et al. Method-of-moments formulation for the analysis of plasmonic nano-optical antennas. , 2011, Journal of the Optical Society of America. A, Optics, image science, and vision.
[5] Atif Shamim,et al. Design, Optimization and Fabrication of a 28.3 THz Nano-Rectenna for Infrared Detection and Rectification , 2014, Scientific Reports.
[6] X. Ye,et al. Study of strong dipole and quadrupole plasmon resonance in Ag nanorings antenna , 2015 .
[7] Shu-Wei Chang,et al. Coating effect on optical resonance of plasmonic nanobowtie antenna , 2010 .
[8] Mario Dagenais,et al. Solar spectrum rectification using nano-antennas and tunneling diodes , 2010, OPTO.
[9] Weibin Chen,et al. Beaming circularly polarized photons from quantum dots coupled with plasmonic spiral antenna. , 2012, Optics express.
[10] Arnan Mitchell,et al. Dielectric resonator nanoantennas at visible frequencies. , 2013, Optics express.
[11] Sergey I. Bozhevolnyi,et al. Gap-plasmon nanoantennas and bowtie resonators , 2012 .
[12] Hannu Tenhunen,et al. DESIGN AND FABRICATION OF WIDEBAND ARCHIMEDEAN SPIRAL ANTENNA BASED ULTRA- LOW COST \GREEN" MODULES FOR RFID SENSING AND WIRELESS APPLICATIONS , 2012 .
[13] Carsten Rockstuhl,et al. Spiral-type terahertz antennas and the manifestation of the Mushiake principle. , 2009, Optics express.
[14] Bert Hecht,et al. Evolutionary optimization of optical antennas. , 2012, Physical review letters.
[15] K. Crozier,et al. Vertical optical antennas integrated with spiral ring gratings for large local electric field enhancement and directional radiation. , 2011, Optics express.
[16] H. Rothuizen,et al. Nanometer thin-film Ni-NiO-Ni diodes for detection and mixing of 30 THz radiation , 1998 .
[17] Ulf Peschel,et al. Excitation of plasmonic gap waveguides by nanoantennas. , 2009, Optics express.
[18] Antenna-enhanced optoelectronic probing of carbon nanotubes. , 2016, Nano letters.
[19] A. C. Maggs,et al. Local simulation algorithms for Coulomb interactions. , 2002 .
[20] J. Liaw. Analysis of a Bowtie Nanoantenna for the Enhancement of Spontaneous Emission , 2008, IEEE Journal of Selected Topics in Quantum Electronics.
[21] R. J. Bell,et al. Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. , 1985, Applied optics.
[22] Prakash Periasamy,et al. Metal-insulator-metal diodes: role of the insulator layer on the rectification performance. , 2013, Advanced materials.
[23] Photoemission from Metal Nanoparticles , 2011, 1109.1869.
[24] Ingrid Wilke,et al. Nanometer thin-film Ni-NiO-Ni diodes for 30 THz radiation , 1994 .
[25] L. Mescia,et al. Design of optical antenna for solar energy collection , 2012 .
[26] Saumil Joshi,et al. High Performance Room Temperature Rectenna IR Detectors Using Graphene Geometric Diodes , 2014, IEEE Journal of Selected Topics in Quantum Electronics.
[27] A. M. A. Sabaawi,et al. Analysis and Modeling of Infrared Solar Rectennas , 2013, IEEE Journal of Selected Topics in Quantum Electronics.
[28] Dejan S. Filipovic,et al. Micro-Coaxial Fed 18 to 110 GHz Planar Log-Periodic Antennas With RF Transitions , 2014, IEEE Transactions on Antennas and Propagation.
[29] C. Wang,et al. Vibrational and thermal properties of small diameter silicon nanowires , 2010 .
[30] Scott Dhuey,et al. Probe-sample optical interaction: size and wavelength dependence in localized plasmon near-field imaging. , 2013, Optics express.
[31] Xiaoping Zhou,et al. OPTICAL PROPERTIES AND PLASMON RESONANCE OF COUPLED GOLD NANOSHELL ARRAYS , 2011 .
[32] S. Clima,et al. High-Performance Metal-Insulator-Metal Tunnel Diode Selectors , 2014, IEEE Electron Device Letters.
[33] Javier Alda,et al. Conversion efficiency of broad-band rectennas for solar energy harvesting applications. , 2013, Optics express.
[34] Paolo Nenzi,et al. Electric Field Enhancement in 3-D Tapered Helix Antenna for Terahertz Applications , 2014, IEEE Transactions on Terahertz Science and Technology.
[35] D. Gramotnev,et al. Plasmonics beyond the diffraction limit , 2010 .
[36] Harald Giessen,et al. Nanoantenna-enhanced gas sensing in a single tailored nanofocus , 2011, CLEO: 2011 - Laser Science to Photonic Applications.
[37] Garnett W. Bryant,et al. Optical properties of coupled metallic nanorods for field-enhanced spectroscopy , 2005 .
[38] J A Bean,et al. Performance Optimization of Antenna-Coupled ${\rm Al}/{\rm AlO}_{x}/{\rm Pt}$ Tunnel Diode Infrared Detectors , 2011, IEEE Journal of Quantum Electronics.
[39] Viktoriia E. Babicheva,et al. Enhanced Electron Photoemission by Collective Lattice Resonances in Plasmonic Nanoparticle-Array Photodetectors and Solar Cells , 2013, Plasmonics.
[40] Javier Alda,et al. The effect of metal dispersion on the resonance of antennas at infrared frequencies , 2009 .
[41] F. J. González,et al. Comparison of dipole, bowtie, spiral and log-periodic IR antennas , 2005 .
[42] K. A. Bachman,et al. Spiral plasmonic nanoantennas as circular polarization transmission filters. , 2012, Optics express.
[43] F. J. González,et al. Seebeck nanoantennas for solar energy harvesting , 2014, 1408.6304.
[44] Ji-Hun Kang,et al. Local capacitor model for plasmonic electric field enhancement , 2009, CLEO/QELS: 2010 Laser Science to Photonic Applications.