Feature-Based Methods for Landmine Detection with Ground Penetrating Radar

Abstract : The subject research was performed at the University of Florida between December 2005 and December 2008. The research was performed to support the ability to detect landmines in an automated fashion using ground-penetrating radar (GPR) array sensors employed in systems being studied by NVESD. The work was concerned with discovering and evaluating i) different types of features that, when extracted from signals associated with GPR signals captured over regions of earth, can help one identify the presence or absence of landmines and landmine-like objects; ii) algorithms and techniques that can employ these features to distinguish between landmines and non-mines; and iii) fuse the results of multiple discriminators to yield improved discrimination performance.

[1]  Andrew P. Bradley,et al.  The use of the area under the ROC curve in the evaluation of machine learning algorithms , 1997, Pattern Recognit..

[2]  Paul D. Gader,et al.  Generalized hidden Markov models. II. Application to handwritten word recognition , 2000, IEEE Trans. Fuzzy Syst..

[3]  Ludmila I. Kuncheva,et al.  Switching between selection and fusion in combining classifiers: an experiment , 2002, IEEE Trans. Syst. Man Cybern. Part B.

[4]  Biing-Hwang Juang,et al.  Fundamentals of speech recognition , 1993, Prentice Hall signal processing series.

[5]  Michel Grabisch,et al.  Relating decision under uncertainty and multicriteria decision making models , 2000, Int. J. Intell. Syst..

[6]  János C. Fodor,et al.  Characterization of the ordered weighted averaging operators , 1995, IEEE Trans. Fuzzy Syst..

[7]  Antanas Verikas,et al.  Soft combination of neural classifiers: A comparative study , 1999, Pattern Recognit. Lett..

[8]  Nirmal K. Bose,et al.  Landmine detection and classification with complex-valued hybrid neural network using scattering parameters dataset , 2005, IEEE Transactions on Neural Networks.

[9]  P. Gader,et al.  Information fusion and sparsity promotion using choquet integrals , 2007 .

[10]  Joseph N. Wilson,et al.  Detecting landmines with ground-penetrating radar using feature-based rules, order statistics, and adaptive whitening , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[11]  K. Leszczynski,et al.  Sugeno's fuzzy measure and fuzzy clustering , 1985 .

[12]  Paul D. Gader,et al.  Continuous Choquet integrals with respect to random sets with applications to landmine detection , 2004, 2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No.04CH37542).

[13]  Paul D. Gader,et al.  Landmine detection with ground penetrating radar using fuzzy k-nearest neighbors , 2004, 2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No.04CH37542).

[14]  Michael C. Mozer,et al.  Optimizing Classifier Performance via an Approximation to the Wilcoxon-Mann-Whitney Statistic , 2003, ICML.

[15]  Hung T. Nguyen,et al.  Fundamentals of Uncertainty Calculi with Applications to Fuzzy Inference , 1994 .

[16]  Leslie M. Collins,et al.  Texture Features for Antitank Landmine Detection Using Ground Penetrating Radar , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[17]  M. Sugeno,et al.  Fuzzy Measures and Integrals: Theory and Applications , 2000 .

[18]  Nicolas de Condorcet Essai Sur L'Application de L'Analyse a la Probabilite Des Decisions Rendues a la Pluralite Des Voix , 2009 .

[19]  Leslie M. Collins,et al.  Application of feature extraction methods for landmine detection using the Wichmann/Niitek ground-penetrating radar , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[20]  Alain Rakotomamonjy,et al.  Optimizing Area Under Roc Curve with SVMs , 2004, ROCAI.

[21]  Paul D. Gader,et al.  Context-dependent fusion for landmine detection with ground-penetrating radar , 2007, SPIE Defense + Commercial Sensing.

[22]  Thomas R. Witten Present state of the art in ground-penetrating radars for mine detection , 1998, Defense, Security, and Sensing.

[23]  Adam Krzyżak,et al.  Methods of combining multiple classifiers and their applications to handwriting recognition , 1992, IEEE Trans. Syst. Man Cybern..

[24]  C. Ji,et al.  Combined weak classifiers , 1996, NIPS 1996.

[25]  Michel Grabisch Modelling data by the Choquet integral , 2003 .

[26]  Mahmood R. Azimi-Sadjadi,et al.  Structural adaptation in neural networks with application to land mine detection , 1997, Proceedings of International Conference on Neural Networks (ICNN'97).

[27]  Erik M. Rosen,et al.  Investigation into the sources of persistent ground-penetrating radar false alarms: data collection, excavation, and analysis , 2003, SPIE Defense + Commercial Sensing.

[28]  Biing-Hwang Juang,et al.  Pattern recognition using a family of design algorithms based upon the generalized probabilistic descent method , 1998, Proc. IEEE.

[29]  Tom Fawcett,et al.  Analysis and Visualization of Classifier Performance: Comparison under Imprecise Class and Cost Distributions , 1997, KDD.

[30]  J. R. Lockwood,et al.  Alternatives for landmine detection , 2003 .

[31]  P.-C.-F. Daunou,et al.  Mémoire sur les élections au scrutin , 1803 .

[32]  Jung-Hsien Chiang,et al.  Choquet fuzzy integral-based hierarchical networks for decision analysis , 1999, IEEE Trans. Fuzzy Syst..

[33]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decision-making , 1988 .

[34]  Isabelle Bloch,et al.  Introduction of neighborhood information in evidence theory and application to data fusion of radar and optical images with partial cloud cover , 1998, Pattern Recognit..

[35]  Joseph N. Wilson,et al.  Feature analysis for the NIITEK ground-penetrating radar using order-weighted averaging operators for landmine detection , 2004, SPIE Defense + Commercial Sensing.

[36]  Hassiba Nemmour,et al.  Neural Network Combination by Fuzzy Integral for Robust Change Detection in Remotely Sensed Imagery , 2005, EURASIP J. Adv. Signal Process..

[37]  James M. Keller,et al.  Information fusion in computer vision using the fuzzy integral , 1990, IEEE Trans. Syst. Man Cybern..

[38]  Otto Lohlein,et al.  Classification of GPR data for mine detection based on hidden Markov models , 1998 .

[39]  Joseph N. Wilson,et al.  Use of the Borda count for landmine discriminator fusion , 2007, SPIE Defense + Commercial Sensing.

[40]  M. Grabisch,et al.  Preference Representation by the Choquet Integral : The Commensurability Hypothesis , 2004 .

[41]  Paul D. Gader,et al.  WORD LEVEL DISCRIMINATIVE TRAINING FOR HANDWRITTEN WORD RECOGNITION , 2004 .

[42]  Paul D. Gader,et al.  Minimum Classification Error Training for Choquet Integrals With Applications to Landmine Detection , 2008, IEEE Transactions on Fuzzy Systems.

[43]  B. Efron The jackknife, the bootstrap, and other resampling plans , 1987 .

[44]  Sargur N. Srihari,et al.  Decision Combination in Multiple Classifier Systems , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[45]  Christophe Labreuche,et al.  The Choquet integral for the aggregation of interval scales in multicriteria decision making , 2003, Fuzzy Sets Syst..

[46]  Lotfi A. Zadeh,et al.  A Simple View of the Dempster-Shafer Theory of Evidence and Its Implication for the Rule of Combination , 1985, AI Mag..

[47]  Biing-Hwang Juang,et al.  Discriminative utterance verification for connected digits recognition , 1995, IEEE Trans. Speech Audio Process..

[48]  Joseph N. Wilson,et al.  Optimizing the Area Under a Receiver Operating Characteristic Curve With Application to Landmine Detection , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[49]  L. Baum,et al.  A Maximization Technique Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains , 1970 .

[50]  J. Thomas Broach,et al.  Automatic mine detection algorithm using ground penetration radar signatures , 1999, Defense, Security, and Sensing.

[51]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[52]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[53]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[54]  Chandra S. Throckmorton,et al.  Algorithms for land mine detection using the NIITEK ground penetrating radar , 2002, SPIE Defense + Commercial Sensing.

[55]  Håkan Brunzell,et al.  Detection of shallowly buried objects using impulse radar , 1999, IEEE Trans. Geosci. Remote. Sens..

[56]  J. Kacprzyk,et al.  The Ordered Weighted Averaging Operators: Theory and Applications , 1997 .

[57]  Paul D. Gader,et al.  A linear prediction land mine detection algorithm for hand held ground penetrating radar , 2002, IEEE Trans. Geosci. Remote. Sens..

[58]  Thomson-CSF,et al.  Fuzzy Integral for Classification and Feature Extraction , 2000 .

[59]  Michel Grabisch,et al.  A new algorithm for identifying fuzzy measures and its application to pattern recognition , 1995, Proceedings of 1995 IEEE International Conference on Fuzzy Systems..

[60]  M. Kendall A NEW MEASURE OF RANK CORRELATION , 1938 .

[61]  Kwong-Sak Leung,et al.  Classification by nonlinear integral projections , 2003, IEEE Trans. Fuzzy Syst..

[62]  Kenneth J. Hintz,et al.  SNR improvements in NIITEK ground-penetrating radar , 2004, SPIE Defense + Commercial Sensing.

[63]  Jiri Matas,et al.  On Combining Classifiers , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[64]  R. Cole,et al.  Survey of the State of the Art in Human Language Technology , 2010 .

[65]  Chia-Hoang Lee A Comparison of Two Evidential Reasoning Schemes , 1988, Artif. Intell..

[66]  Paul D. Gader,et al.  Landmine detection with ground penetrating radar using hidden Markov models , 2001, IEEE Trans. Geosci. Remote. Sens..

[67]  Arthur P. Dempster,et al.  Upper and Lower Probabilities Induced by a Multivalued Mapping , 1967, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[68]  G. Klir,et al.  Fuzzy Measure Theory , 1993 .

[69]  Isabelle Bloch,et al.  Sensor fusion in anti-personnel mine detection using a two-level belief function model , 2003, IEEE Trans. Syst. Man Cybern. Part C.

[70]  Paul D. Gader,et al.  Real-Time Landmine Detection with Ground-Penetrating Radar Using Discriminative and Adaptive Hidden Markov Models , 2005, EURASIP J. Adv. Signal Process..

[71]  Leslie M. Collins,et al.  Application of texture feature classification methods to landmine/clutter discrimination in off-lane GPR data , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[72]  R. Yager On the dempster-shafer framework and new combination rules , 1987, Inf. Sci..

[73]  Klamer Schutte,et al.  Sensor Data Fusion for Anti-Personnel LandMine Detection , 1998 .

[74]  Iain McLean E. J. Nanson, Social Choice and Electoral Reform , 1996 .

[75]  Paul D. Gader,et al.  Detection and discrimination of landmines in ground-penetrating radar based on edge histogram descriptors , 2006, SPIE Defense + Commercial Sensing.

[76]  Kangwook Kim,et al.  Design and realization of a discretely loaded resistive vee dipole for ground‐penetrating radars , 2004 .

[77]  菅野 道夫,et al.  Theory of fuzzy integrals and its applications , 1975 .

[78]  Jean-Luc Marichal,et al.  Aggregation of interacting criteria by means of the discrete Choquet integral , 2002 .

[79]  M. Kendall,et al.  The Problem of $m$ Rankings , 1939 .

[80]  Paul D. Gader,et al.  Multi-sensor and algorithm fusion with the Choquet integral: applications to landmine detection , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[81]  Clement T. Yu,et al.  Evaluating strategies and systems for content based indexing of person images on the Web , 2000, ACM Multimedia.

[82]  D. Sculley,et al.  Rank Aggregation for Similar Items , 2007, SDM.

[83]  Paul D. Gader,et al.  Detection and discrimination of landmines in ground-penetrating radar using an EigenMine and fuzzy-membership-function approach , 2004, SPIE Defense + Commercial Sensing.

[84]  D. Black The theory of committees and elections , 1959 .

[85]  L. A. Goodman,et al.  Social Choice and Individual Values , 1951 .

[86]  M. Sugeno,et al.  Multi-attribute classification using fuzzy integral , 1992, [1992 Proceedings] IEEE International Conference on Fuzzy Systems.

[87]  P. Gader,et al.  Neural Versus Heuristic Development of Choquet Fuzzy Integral Fusion Algorithms for Land Mine Detection , 2000 .

[88]  Joseph N. Wilson,et al.  An Investigation of Using the Spectral Characteristics From Ground Penetrating Radar for Landmine/Clutter Discrimination , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[89]  Biing-Hwang Juang,et al.  Minimum classification error rate methods for speech recognition , 1997, IEEE Trans. Speech Audio Process..

[90]  Hichem Frigui,et al.  Clustering by competitive agglomeration , 1997, Pattern Recognit..

[91]  Chandra S. Throckmorton,et al.  Feature-based processing of prescreener-generated alarms for performance improvements in target identification using the NIITEK ground-penetrating radar system , 2004, SPIE Defense + Commercial Sensing.

[92]  Glenn Shafer,et al.  The combination of evidence , 1986, Int. J. Intell. Syst..

[93]  Michael J. Pazzani,et al.  Combining Neural Network Regression Estimates with Regularized Linear Weights , 1996, NIPS.

[94]  Andrey Temko,et al.  Fuzzy integral based information fusion for classification of highly confusable non-speech sounds , 2008, Pattern Recognit..

[95]  Ping Chen,et al.  Training DHMMs of mine and clutter to minimize landmine detection errors , 2003, IEEE Trans. Geosci. Remote. Sens..

[96]  Jung-Hsien Chiang,et al.  Hybrid fuzzy-neural systems in handwritten word recognition , 1997, IEEE Trans. Fuzzy Syst..

[97]  Michel Grabisch,et al.  Classification by fuzzy integral: performance and tests , 1994, CVPR 1994.

[98]  Hichem Frigui,et al.  Interactive image retrieval using fuzzy sets , 2001, Pattern Recognit. Lett..

[99]  Paul D. Gader,et al.  Fusion of handwritten word classifiers , 1996, Pattern Recognit. Lett..

[100]  Joseph N. Wilson,et al.  A Large-Scale Systematic Evaluation of Algorithms Using Ground-Penetrating Radar for Landmine Detection and Discrimination , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[101]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[102]  E. Mandler,et al.  Combining the Classification Results of Independent Classifiers Based on the Dempster/Shafer Theory of Evidence , 1988 .

[103]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[104]  Sherif Hashem,et al.  Optimal Linear Combinations of Neural Networks , 1997, Neural Networks.

[105]  Ludmila I. Kuncheva,et al.  'Change-glasses' approach in pattern recognition , 1993, Pattern Recognit. Lett..

[106]  Robert A. Jacobs,et al.  Methods For Combining Experts' Probability Assessments , 1995, Neural Computation.

[107]  Dragana Carevic Clutter reduction and target detection in ground-penetrating radar data using wavelets , 1999, Defense, Security, and Sensing.

[108]  L. Carin,et al.  Resonances of perfectly conducting wires and bodies of revolution buried in a lossy dispersive half-space , 1996 .

[109]  Brian A. Baertlein,et al.  Subspace decomposition technique to improve GPR imaging of antipersonnel mines , 2000, Defense, Security, and Sensing.

[110]  Raman K. Mehra,et al.  Automatic mine detection based on ground-penetrating radar , 1999, Defense, Security, and Sensing.

[111]  Joseph N. Wilson,et al.  Confidence level fusion of edge histogram descriptor, hidden Markov model, spectral correlation feature, and NUKEv6 , 2007, SPIE Defense + Commercial Sensing.

[112]  Terry Gander,et al.  Jane's Ammunition Handbook , 1998 .

[113]  Paul D. Gader,et al.  Fuzzy logic detection of landmines with ground penetrating radar , 2000, Signal Process..

[114]  W. W. Peterson,et al.  The theory of signal detectability , 1954, Trans. IRE Prof. Group Inf. Theory.

[115]  L. Baum,et al.  Statistical Inference for Probabilistic Functions of Finite State Markov Chains , 1966 .

[116]  Paul D. Gader,et al.  Detection of land mines using fuzzy and possibilistic membership functions , 2003, The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ '03..

[117]  Hichem Frigui,et al.  Unsupervised learning of prototypes and attribute weights , 2004, Pattern Recognit..

[118]  Leslie M. Collins,et al.  Application of Markov random fields to landmine detection in ground penetrating radar data , 2008, SPIE Defense + Commercial Sensing.

[119]  P.A. Torrione,et al.  Performance of an adaptive feature-based processor for a wideband ground penetrating radar system , 2006, IEEE Transactions on Aerospace and Electronic Systems.

[120]  Klamer Schutte,et al.  Sensor fusion for antipersonnel landmine detection: a case study , 1999, Defense, Security, and Sensing.

[121]  Thomas H. Bell,et al.  Simple phenomenological models for wideband frequency-domain electromagnetic induction , 2001, IEEE Trans. Geosci. Remote. Sens..

[122]  Jing Zhang,et al.  Landmine Feature Extraction and Classification of GPR Data Based on SVM Method , 2004, ISNN.

[123]  James C. Bezdek,et al.  Decision templates for multiple classifier fusion: an experimental comparison , 2001, Pattern Recognit..

[124]  W. D. Burnside,et al.  Ground penetration radar target classification via complex natural resonances , 1995, IEEE Antennas and Propagation Society International Symposium. 1995 Digest.

[125]  Julien Radoux,et al.  Bayesian Data Fusion for Adaptable Image Pansharpening , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[126]  Joseph N. Wilson,et al.  Improving landmine detection using frequency domain features from ground penetrating radar , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[127]  P. Gader,et al.  Advances in fuzzy integration for pattern recognition , 1994, CVPR 1994.

[128]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[129]  P. L. Bogler,et al.  Shafer-dempster reasoning with applications to multisensor target identification systems , 1987, IEEE Transactions on Systems, Man, and Cybernetics.

[130]  Lawrence A. Klein,et al.  Sensor and Data Fusion Concepts and Applications , 1993 .

[131]  Paul D. Gader,et al.  Landmine detection using fuzzy sets with GPR images , 1998, 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36228).

[132]  Paul D. Gader,et al.  Detection and Discrimination of Land Mines based on Edge Histogram Descriptors and Fuzzy K-Nearest Neighbors , 2006, 2006 IEEE International Conference on Fuzzy Systems.

[133]  Kevin W. Bowyer,et al.  Combination of multiple classifiers using local accuracy estimates , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[134]  Fabio Roli,et al.  Fusion of multiple classifiers for intrusion detection in computer networks , 2003, Pattern Recognit. Lett..

[135]  Ming-Huwi Horng,et al.  Texture feature coding method for texture classification , 2003 .

[136]  Luc Vandendorpe,et al.  Decision Level Fusion of Intramodal Personal Identity Verification Experts , 2002, Multiple Classifier Systems.

[137]  L. Peters,et al.  Buried unexploded ordnance identification via complex natural resonances , 1997 .

[138]  Xin-She Yang,et al.  Introduction to Algorithms , 2021, Nature-Inspired Optimization Algorithms.

[139]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[140]  Paul D. Gader,et al.  Generalized Choquet fuzzy integral fusion , 2002, Inf. Fusion.

[141]  Mehryar Mohri,et al.  AUC Optimization vs. Error Rate Minimization , 2003, NIPS.

[142]  Lambert Schomaker,et al.  Variants of the Borda count method for combining ranked classifier hypotheses , 2000 .

[143]  Ron Kohavi,et al.  The Case against Accuracy Estimation for Comparing Induction Algorithms , 1998, ICML.