Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix

Stokes-shift-engineered CdSe/CdS quantum dots are used to fabricate luminescent solar concentrators that are tens of centimetres long and do not exhibit reabsorption losses. With efficiencies of over 10% and an effective concentration factor of 4.4, they demonstrate the potential of using Stokes-shift-engineered quantum dots in large-area luminescent solar concentrators.

[1]  Paul P. C. Verbunt,et al.  Thirty Years of Luminescent Solar Concentrator Research: Solar Energy for the Built Environment , 2012 .

[2]  Daniel Chemisana,et al.  Building Integrated Concentrating Photovoltaics: A review , 2011 .

[3]  S. Erwin,et al.  Doped Nanocrystals , 2008, Science.

[4]  F. Purcell-Milton,et al.  Quantum dots for Luminescent Solar Concentrators , 2012 .

[5]  V. Klimov Spectral and dynamical properties of multiexcitons in semiconductor nanocrystals. , 2007, Annual review of physical chemistry.

[6]  S. Jungsuttiwong,et al.  Synthesis, characterization, physical properties, and applications of highly fluorescent pyrene-functionalized 9,9-bis(4-diarylaminophenyl)fluorene in organic light-emitting diodes , 2012 .

[7]  D. Gamelin,et al.  Doped Semiconductor Nanocrystals: Synthesis, Characterization, Physical Properties, and Applications , 2005 .

[8]  Yeshaiahu Fainman,et al.  PMMA quantum dots composites fabricated via use of pre-polymerization. , 2005, Optics express.

[9]  C. Galland,et al.  Dynamic hole blockade yields two-color quantum and classical light from dot-in-bulk nanocrystals. , 2013, Nano letters.

[10]  Sheldon T. Bailey,et al.  Photo-stability and performance of CdSe/ZnS quantum dots in luminescent solar concentrators , 2009 .

[11]  D. Yakovlev,et al.  Thermal activation of non-radiative Auger recombination in charged colloidal nanocrystals. , 2013, Nature nanotechnology.

[12]  Sergio Brovelli,et al.  Copper-doped inverted core/shell nanocrystals with "permanent" optically active holes. , 2011, Nano letters.

[13]  M. Gu,et al.  Bulk synthesis of homogeneous and transparent bulk core/multishell quantum dots/PMMA nanocomposites with bright luminescence , 2013 .

[14]  Timothy D Heidel,et al.  High-Efficiency Organic Solar Concentrators for Photovoltaics , 2008, Science.

[15]  C. Galland,et al.  Tuning radiative recombination in Cu-doped nanocrystals via electrochemical control of surface trapping. , 2012, Nano letters.

[16]  Roland Winston,et al.  Viability of using near infrared PbS quantum dots as active materials in luminescent solar concentrators , 2010 .

[17]  Wilfried van Sark,et al.  Fabrication and full characterization of state-of-the-art quantum dot luminescent solar concentrators , 2011 .

[18]  Yasuhiro Koike,et al.  Light scattering and heterogeneities in low-loss poly(methyl methacrylate) glasses , 1989 .

[19]  V. Klimov Nanocrystal quantum dots, second edition , 2010 .

[20]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[21]  A. Malko,et al.  High‐Performance, Quantum Dot Nanocomposites for Nonlinear Optical and Optical Gain Applications , 2003 .

[22]  Philip C. Eames,et al.  Quantum dot solar concentrators: Electrical conversion efficiencies and comparative concentrating factors of fabricated devices , 2007 .

[23]  N. J. Ekins-Daukes,et al.  Quantum dot solar concentrators , 2004 .

[24]  G. Rainò,et al.  Probing the wave function delocalization in CdSe/CdS dot-in-rod nanocrystals by time- and temperature-resolved spectroscopy. , 2011, ACS nano.

[25]  Royce W Murray,et al.  Ligand effects on optical properties of CdSe nanocrystals. , 2005, The journal of physical chemistry. B.

[26]  A. W. Wills,et al.  Electronic impurity doping in CdSe nanocrystals. , 2012, Nano letters.

[27]  J. Luther,et al.  Peak External Photocurrent Quantum Efficiency Exceeding 100% via MEG in a Quantum Dot Solar Cell , 2011, Science.

[28]  Sergio Brovelli,et al.  'Giant' CdSe/CdS core/shell nanocrystal quantum dots as efficient electroluminescent materials: strong influence of shell thickness on light-emitting diode performance. , 2012, Nano letters.

[29]  Victor I Klimov,et al.  Hybrid photovoltaics based on semiconductor nanocrystals and amorphous silicon. , 2009, Nano letters.

[30]  C. Galland,et al.  Dual-color electroluminescence from dot-in-bulk nanocrystals. , 2014, Nano letters.

[31]  Sergio Brovelli,et al.  Breakdown of volume scaling in Auger recombination in CdSe/CdS heteronanocrystals: the role of the core-shell interface. , 2011, Nano letters.

[32]  G. Lanzani,et al.  Suppression of biexciton auger recombination in CdSe/CdS dot/rods: role of the electronic structure in the carrier dynamics. , 2010, Nano letters.

[33]  N. Borys,et al.  The Role of Particle Morphology in Interfacial Energy Transfer in CdSe/CdS Heterostructure Nanocrystals , 2010, Science.

[34]  Marcus Müller,et al.  Colloidal nanocrystals embedded in macrocrystals: robustness, photostability, and color purity. , 2012, Nano letters.

[35]  J. Vela,et al.  "Giant" multishell CdSe nanocrystal quantum dots with suppressed blinking. , 2008, Journal of the American Chemical Society.

[36]  A. Meyer,et al.  Luminescent Solar Concentrators--a review of recent results. , 2008, Optics express.

[37]  Edward H. Sargent Colloidal quantum dot solar cells , 2012 .

[38]  D. F. Kelley,et al.  Monte-Carlo simulations of light propagation in luminescent solar concentrators based on semiconductor nanoparticles , 2011 .

[39]  G. Patriarche,et al.  Colloidal CdSe/CdS dot-in-plate nanocrystals with 2D-polarized emission. , 2012, ACS nano.

[40]  M. L. Curri,et al.  Optical properties of hybrid composites based on highly luminescent CdS nanocrystals in polymer , 2004 .

[41]  V. Bulović,et al.  Inkjet‐Printed Quantum Dot–Polymer Composites for Full‐Color AC‐Driven Displays , 2009 .

[42]  F. García-Santamaría,et al.  Nano-engineered electron–hole exchange interaction controls exciton dynamics in core–shell semiconductor nanocrystals , 2011, Nature communications.

[43]  W. V. Sark,et al.  Tackling self-absorption in Luminescent Solar Concentrators with type-II colloidal quantum dots , 2012 .

[44]  Norris,et al.  Size dependence of exciton fine structure in CdSe quantum dots. , 1996, Physical review. B, Condensed matter.

[45]  A. Goetzberger,et al.  Solar energy conversion with fluorescent collectors , 1977 .