A dual-mixed approximation method for a three-field model of a nonlinear generalized Stokes problem
暂无分享,去创建一个
[1] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[2] O. A. Ladyzhenskai︠a︡. Boundary value problems of mathematical physics , 1967 .
[3] G. Folland. Introduction to Partial Differential Equations , 1976 .
[4] P. Raviart,et al. A mixed finite element method for 2-nd order elliptic problems , 1977 .
[5] R. Bird. Dynamics of Polymeric Liquids , 1977 .
[6] E. Kreyszig. Introductory Functional Analysis With Applications , 1978 .
[7] C. Han,et al. Multiphase flow in polymer processing , 1981 .
[8] C. P. Gupta,et al. A family of higher order mixed finite element methods for plane elasticity , 1984 .
[9] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[10] Jean E. Roberts,et al. Mixed and hybrid finite element methods , 1987 .
[11] J. Baranger,et al. Analyse numerique des ecoulements quasi-Newtoniens dont la viscosite obeit a la loi puissance ou la loi de carreau , 1990 .
[12] Jacques Baranger,et al. Numerical analysis of quasi-Newtonian flow obeying the power low or the Carreau flow , 1990 .
[13] R. Rogers,et al. An introduction to partial differential equations , 1993 .
[14] Jacques Baranger,et al. Numerical analysis of a three-fields model for a quasi-Newtonian flow , 1993 .
[15] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[16] D. Sandri. A posteriori estimators for mixed finite element approximations of a fluid obeying the power law , 1998 .
[17] Mohamed Farhloul,et al. On a mixed finite element method for the p-Laplacian , 2000 .
[18] H. Manouzi,et al. Mixed finite element analysis of a non‐linear three‐fields Stokes model , 2001 .
[19] Marco Dressler,et al. Computational Rheology , 2002 .
[20] G. Gatica. Solvability and Galerkin Approximations of a Class of Nonlinear Operator Equations , 2002 .
[21] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[22] N. Heuer,et al. On the numerical analysis of nonlinear twofold saddle point problems , 2003 .
[23] Salim Meddahi,et al. A low-order mixed finite element method for a class of quasi-Newtonian Stokes flows. Part II: a posteriori error analysis , 2004 .
[24] J. Guermond,et al. Theory and practice of finite elements , 2004 .
[25] Timothy Nigel Phillips,et al. Residual a posteriori error estimator for a three-field model of a non-linear generalized Stokes problem , 2006 .
[26] Vincent J. Ervin,et al. Numerical Approximation of a Quasi-Newtonian Stokes Flow Problem with Defective Boundary Conditions , 2007, SIAM J. Numer. Anal..