A dual-mixed approximation method for a three-field model of a nonlinear generalized Stokes problem

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  O. A. Ladyzhenskai︠a︡ Boundary value problems of mathematical physics , 1967 .

[3]  G. Folland Introduction to Partial Differential Equations , 1976 .

[4]  P. Raviart,et al.  A mixed finite element method for 2-nd order elliptic problems , 1977 .

[5]  R. Bird Dynamics of Polymeric Liquids , 1977 .

[6]  E. Kreyszig Introductory Functional Analysis With Applications , 1978 .

[7]  C. Han,et al.  Multiphase flow in polymer processing , 1981 .

[8]  C. P. Gupta,et al.  A family of higher order mixed finite element methods for plane elasticity , 1984 .

[9]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[10]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[11]  J. Baranger,et al.  Analyse numerique des ecoulements quasi-Newtoniens dont la viscosite obeit a la loi puissance ou la loi de carreau , 1990 .

[12]  Jacques Baranger,et al.  Numerical analysis of quasi-Newtonian flow obeying the power low or the Carreau flow , 1990 .

[13]  R. Rogers,et al.  An introduction to partial differential equations , 1993 .

[14]  Jacques Baranger,et al.  Numerical analysis of a three-fields model for a quasi-Newtonian flow , 1993 .

[15]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[16]  D. Sandri A posteriori estimators for mixed finite element approximations of a fluid obeying the power law , 1998 .

[17]  Mohamed Farhloul,et al.  On a mixed finite element method for the p-Laplacian , 2000 .

[18]  H. Manouzi,et al.  Mixed finite element analysis of a non‐linear three‐fields Stokes model , 2001 .

[19]  Marco Dressler,et al.  Computational Rheology , 2002 .

[20]  G. Gatica Solvability and Galerkin Approximations of a Class of Nonlinear Operator Equations , 2002 .

[21]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[22]  N. Heuer,et al.  On the numerical analysis of nonlinear twofold saddle point problems , 2003 .

[23]  Salim Meddahi,et al.  A low-order mixed finite element method for a class of quasi-Newtonian Stokes flows. Part II: a posteriori error analysis , 2004 .

[24]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[25]  Timothy Nigel Phillips,et al.  Residual a posteriori error estimator for a three-field model of a non-linear generalized Stokes problem , 2006 .

[26]  Vincent J. Ervin,et al.  Numerical Approximation of a Quasi-Newtonian Stokes Flow Problem with Defective Boundary Conditions , 2007, SIAM J. Numer. Anal..