Study of a Leslie–Gower-type tritrophic population model

Abstract A three-dimensional continuous time dynamical system is considered. It is a model for a tritrophic food chain, based on a modified version of the Leslie–Gower scheme. We establish and prove theorems on boundedness of the system, existence of an attracting set, existence and local or global stability of equilibria which represent the extinction of the top or intermediate predator. Using intensive numerical qualitative analysis we show that the model could exhibit chaotic dynamics for realistic parameter and state values. Transition to chaotic behavior is established via period doubling bifurcation, and some sequences of distinctive period-halving are found.

[1]  Sze-Bi Hsu,et al.  On Global Stability of a Predator-Prey System , 1978 .

[2]  R. Macarthur,et al.  Graphical Representation and Stability Conditions of Predator-Prey Interactions , 1963, The American Naturalist.

[3]  P. H. Leslie SOME FURTHER NOTES ON THE USE OF MATRICES IN POPULATION MATHEMATICS , 1948 .

[4]  M. A. Aziz-Alaoui,et al.  Analysis of the dynamics of a realistic ecological model , 2002 .

[5]  W. Schaffer Order and Chaos in Ecological Systems , 1985 .

[6]  M. A. Aziz-Alaoui,et al.  Should all the species of a food chain be counted to investigate the global dynamics , 2002 .

[7]  A. Hastings,et al.  Chaos in a Three-Species Food Chain , 1991 .

[8]  R. May,et al.  Stability and Complexity in Model Ecosystems , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[9]  S. Rinaldi,et al.  On the role of body size in a tri-trophic metapopulation model , 1996 .

[10]  S Rinaldi,et al.  Remarks on food chain dynamics. , 1996, Mathematical biosciences.

[11]  Sergio Rinaldi,et al.  Low- and high-frequency oscillations in three-dimensional food chain systems , 1992 .

[12]  Joseph W.-H. So,et al.  Global stability and persistence of simple food chains , 1985 .

[13]  Kevin S. McCann,et al.  Biological Conditions for Chaos in a Three‐Species Food Chain , 1994 .

[14]  E. C. Pielou,et al.  An introduction to mathematical ecology , 1970 .

[15]  H. I. Freedman,et al.  Mathematical analysis of some three-species food-chain models , 1977 .

[16]  P. Yodzis,et al.  Predator-Prey Theory and Management of Multispecies Fisheries , 1994 .

[17]  H. M. El-Owaidy,et al.  Mathematical analysis of a food-web model , 2001, Appl. Math. Comput..

[18]  Ilkka Hanski,et al.  Specialist predators, generalist predators, and the microtine rodent cycle. , 1991 .

[19]  R. K. Upadhyay,et al.  Species extinction problem: genetic vs ecological factors , 2001 .

[20]  Alan Hastings,et al.  Chaos in three species food chains , 1994 .

[21]  Yuri A. Kuznetsov,et al.  Multiple attractors, catastrophes and chaos in seasonally perturbed predator-prey communities , 1993 .

[22]  S. Jørgensen Handbook of environmental data and ecological parameters , 1979 .

[23]  Sebastiaan A.L.M. Kooijman,et al.  Homoclinic and heteroclinic orbits to a cycle in a tri-trophic food chain , 1999 .

[24]  V Rai,et al.  Period-doubling bifurcations leading to chaos in a model food chain , 1993 .

[25]  Vikas Rai,et al.  Chaos: An Ecological Reality? , 1998 .

[26]  H. I. Freedman Graphical stability, enrichment, and pest control by a natural enemy , 1976 .

[27]  Sze-Bi Hsu,et al.  Coexistence of competing predators in a chemostat , 1983 .

[28]  Vikas Rai,et al.  Why chaos is rarely observed in natural populations , 1997 .

[29]  Vikas Rai,et al.  How do ecosystems respond to external perturbations , 2000 .

[30]  Vikas Rai Order and chaos in ecological systems , 1992 .

[31]  J. Gower,et al.  The properties of a stochastic model for the predator-prey type of interaction between two species , 1960 .