Nanoarchitectonics for Wide Bandgap Semiconductor Nanowires: Toward the Next Generation of Nanoelectromechanical Systems for Environmental Monitoring

Abstract Semiconductor nanowires are widely considered as the building blocks that revolutionized many areas of nanosciences and nanotechnologies. The unique features in nanowires, including high electron transport, excellent mechanical robustness, large surface area, and capability to engineer their intrinsic properties, enable new classes of nanoelectromechanical systems (NEMS). Wide bandgap (WBG) semiconductors in the form of nanowires are a hot spot of research owing to the tremendous possibilities in NEMS, particularly for environmental monitoring and energy harvesting. This article presents a comprehensive overview of the recent progress on the growth, properties and applications of silicon carbide (SiC), group III‐nitrides, and diamond nanowires as the materials of choice for NEMS. It begins with a snapshot on material developments and fabrication technologies, covering both bottom‐up and top‐down approaches. A discussion on the mechanical, electrical, optical, and thermal properties is provided detailing the fundamental physics of WBG nanowires along with their potential for NEMS. A series of sensing and electronic devices particularly for environmental monitoring is reviewed, which further extend the capability in industrial applications. The article concludes with the merits and shortcomings of environmental monitoring applications based on these classes of nanowires, providing a roadmap for future development in this fast‐emerging research field.

[1]  Haitao Liu,et al.  Assembly of β‐SiC Nanowires film and humidity sensing performance , 2018, International Journal of Applied Ceramic Technology.

[2]  Haitao Liu,et al.  Synthesis and formation mechanism of twinned SiC nanowires made by a catalyst-free thermal chemical vapour deposition method , 2014 .

[3]  Yuefei Zhang,et al.  Piezoresistance behaviors of ultra-strained SiC nanowires , 2012 .

[4]  Nai‐Jen Ku,et al.  Optimization of the Output Efficiency of GaN Nanowire Piezoelectric Nanogenerators by Tuning the Free Carrier Concentration , 2014 .

[5]  G. Vanko,et al.  AlGaN/GaN diaphragm-based pressure sensor with direct high performance piezoelectric transduction mechanism , 2015 .

[6]  Margit Zacharias,et al.  Semiconductor nanowires: from self-organization to patterned growth. , 2006, Small.

[7]  Quantum transport in GaN/AlN double-barrier heterostructure nanowires. , 2010, Nano letters.

[8]  Linli Zhu,et al.  Influence of Prestress Fields on the Phonon Thermal Conductivity of GaN Nanostructures , 2014 .

[9]  Kai Cui,et al.  Full-color InGaN/GaN dot-in-a-wire light emitting diodes on silicon , 2011, Nanotechnology.

[10]  H. Haick,et al.  UV-induced SiC nanowire sensors , 2015 .

[11]  Xiaolin Zheng,et al.  Fabricating nanowire devices on diverse substrates by simple transfer-printing methods , 2010, Proceedings of the National Academy of Sciences.

[12]  Charles M. Lieber,et al.  Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes , 1997 .

[13]  Y. Feng,et al.  Mechanical responses of a-axis GaN nanowires under axial loads , 2018, Nanotechnology.

[14]  Yugang Sun,et al.  Simple Catalyst-Free Method to the Synthesis of β-SiC Nanowires and Their Field Emission Properties , 2009 .

[15]  Christophe Vieu,et al.  Electron beam lithography: resolution limits and applications , 2000 .

[16]  E. Lüder,et al.  Polycrystalline silicon-based sensors , 1986 .

[17]  Laura E. Jackson,et al.  Rethinking Environmental Protection: Meeting the Challenges of a Changing World , 2017, Environmental health perspectives.

[18]  Christoph E. Nebel,et al.  Vertically aligned diamond nanowires: Fabrication, characterization, and application for DNA sensing , 2009 .

[19]  Yue Zhang,et al.  Ultraviolet Detectors Based on Wide Bandgap Semiconductor Nanowire: A Review , 2018, Sensors.

[20]  David Cornu,et al.  Mechanical properties of SiC nanowires determined by scanning electron and field emission microscopies , 2008 .

[21]  P. Yang,et al.  Giant piezoresistance effect in silicon nanowires , 2006, Nature nanotechnology.

[22]  Y. Hao,et al.  Single‐InN‐Nanowire Nanogenerator with Upto 1 V Output Voltage , 2010, Advanced materials.

[23]  Charles M. Lieber,et al.  Synthesis of p-Type Gallium Nitride Nanowires for Electronic and Photonic Nanodevices , 2003 .

[24]  S. Bhansali,et al.  Organic-inorganic hybrid nanocomposite-based gas sensors for environmental monitoring. , 2015, Chemical reviews.

[25]  Byoung Sam Kang,et al.  Wide Bandgap Semiconductor Nanorod and Thin Film Gas Sensors , 2006, Sensors (Basel, Switzerland).

[26]  F. Julien,et al.  Ultraviolet photodetector based on GaN/AlN quantum disks in a single nanowire. , 2010, Nano letters.

[27]  N. Papanikolaou Lattice thermal conductivity of SiC nanowires , 2008 .

[28]  Giorgio Sberveglieri,et al.  Recent developments in semiconducting thin-film gas sensors , 1995 .

[29]  Osamu Fukuda,et al.  Flexible piezoelectric pressure sensors using oriented aluminum nitride thin films prepared on polyethylene terephthalate films , 2006 .

[30]  Liwei Lin,et al.  Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. , 2010, Nano letters.

[31]  Y. Chalopin,et al.  Modulated SiC nanowires: Molecular dynamics study of their thermal properties , 2013 .

[32]  Shukai Duan,et al.  Boron-doped diamond nanowires for CO gas sensing application , 2017 .

[33]  Zafar Hussain Ibupoto,et al.  Comparative study of ZnO nanorods and thin films for chemical and biosensing applications and the development of ZnO nanorods based potentiometric strontium ion sensor , 2013 .

[34]  H. Lüth,et al.  Interface and wetting layer effect on the catalyst-free nucleation and growth of GaN nanowires. , 2008, Small.

[35]  Jie Zou Lattice thermal conductivity of freestanding gallium nitride nanowires , 2010 .

[36]  A. Rizzi Surface and interface electronic properties of group III-nitride heterostructures , 2002 .

[37]  Ian H. Stevenson,et al.  Principles and mechanisms of gas sensing by GaN nanowires functionalized with gold nanoparticles , 2006 .

[38]  G. Cheng,et al.  Mechanical properties of silicon carbide nanowires: effect of size-dependent defect density. , 2014, Nano letters.

[39]  T. Aoki,et al.  Simple method for fabrication of diamond nanowires by inductively coupled plasma reactive ion etching , 2017 .

[40]  Xiao Tang,et al.  Simulating stress-tunable phonon and thermal properties in heterostructured AlN/GaN/AlN-nanofilms , 2018, Materials Research Express.

[41]  Zhong Lin Wang Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. , 2013, ACS nano.

[42]  Chong H. Ahn,et al.  State-of-the-art lab chip sensors for environmental water monitoring , 2011 .

[43]  John A. Rogers,et al.  Fabricating semiconductor nano/microwires and transfer printing ordered arrays of them onto plastic substrates , 2004 .

[44]  Majid Minary-Jolandan,et al.  Individual GaN nanowires exhibit strong piezoelectricity in 3D. , 2012, Nano letters.

[45]  Zhong-Lin Wang Towards Self‐Powered Nanosystems: From Nanogenerators to Nanopiezotronics , 2008 .

[46]  J. Linnros,et al.  Controlled fabrication of silicon nanowires by electron beam lithography and electrochemical size reduction. , 2005, Nano letters.

[47]  Igor Levin,et al.  Catalyst-free growth of GaN nanowires , 2006 .

[48]  Zefeng Chen,et al.  Flexible Piezoelectric-Induced Pressure Sensors for Static Measurements Based on Nanowires/Graphene Heterostructures. , 2017, ACS nano.

[49]  Krishna Shenai,et al.  Optimum semiconductors for high-power electronics , 1989 .

[50]  K. Kolasinski Catalytic growth of nanowires: Vapor–liquid–solid, vapor–solid–solid, solution–liquid–solid and solid–liquid–solid growth , 2006 .

[51]  K. Dick,et al.  Preferential Interface Nucleation: An Expansion of the VLS Growth Mechanism for Nanowires , 2009 .

[52]  H. Cha,et al.  High-yield GaN nanowire synthesis and field-effect transistor fabrication , 2006 .

[53]  Yafei Zhang,et al.  Simple approach to β-SiC nanowires: Synthesis, optical, and electrical properties , 2006 .

[54]  V. Tilak,et al.  Piezoresistive and piezoelectric effects in GaN , 2006 .

[55]  Heon-Jin Choi,et al.  Fabrication and Electrical Transport Properties of CVD Grown Silicon Carbide Nanowires (SiC NWs) for Field Effect Transistor , 2006 .

[56]  Liangliang Li,et al.  Phonon thermal conductivity of GaN nanotubes , 2012 .

[57]  F. H. Julien,et al.  GaN nanowire ultraviolet photodetector with a graphene transparent contact , 2013 .

[58]  Leandro Lorenzelli,et al.  Technologies for Printing Sensors and Electronics Over Large Flexible Substrates: A Review , 2015, IEEE Sensors Journal.

[59]  Peidong Yang,et al.  Direct Observation of Vapor-Liquid-Solid Nanowire Growth , 2001 .

[60]  J. Rogers,et al.  Long-Lived, Transferred Crystalline Silicon Carbide Nanomembranes for Implantable Flexible Electronics. , 2019, ACS nano.

[61]  Mark G. Blamire,et al.  Focused ion beam fabrication of silicon print masters , 2003 .

[62]  J. Milewski,et al.  Growth of beta-silicon carbide whiskers by the VLS process , 1985 .

[63]  Zhiyong Fan,et al.  Gate-refreshable nanowire chemical sensors , 2005 .

[64]  Ateeq J. Suria,et al.  Tuning Electrical and Thermal Transport in AlGaN/GaN Heterostructures via Buffer Layer Engineering , 2017, 1710.03279.

[65]  He Zheng,et al.  In situ nanomechanics of GaN nanowires. , 2011, Nano letters.

[66]  Michael C. McAlpine,et al.  Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors. , 2007, Nature materials.

[67]  Z. Hou,et al.  Field-effect transistor based on /spl beta/-SiC nanowire , 2006, IEEE Electron Device Letters.

[68]  Gustavo Rivas,et al.  DNA electrochemical biosensors for environmental monitoring. A review , 1997 .

[69]  Richard Martel,et al.  Simple fabrication scheme for sub-10 nm electrode gaps using electron-beam lithography , 2002 .

[70]  Wei Lu,et al.  TOPICAL REVIEW: Semiconductor nanowires , 2006 .

[71]  Jenshan Lin,et al.  Recent advances in wide bandgap semiconductor biological and gas sensors , 2010 .

[72]  N. Nguyen,et al.  The Piezoresistive Effect in Top–Down Fabricated p-Type 3C-SiC Nanowires , 2016, IEEE Electron Device Letters.

[73]  A. Davydov,et al.  Substrate-Dependent Orientation and Polytype Control in SiC Nanowires Grown on 4H-SiC Substrates , 2011 .

[74]  Fei Liu,et al.  Investigation on the photoconductive behaviors of an individual AlN nanowire under different excited lights , 2012, Nanoscale Research Letters.

[75]  Shiliang Wang,et al.  The Mechanical Properties of Nanowires , 2017, Advanced science.

[76]  T. Choi,et al.  Highly enhanced thermoelectric figure of merit of a β-SiC nanowire with a nanoelectromechanical measurement approach , 2012 .

[77]  N. Chaniotakis,et al.  Novel semiconductor materials for the development of chemical sensors and biosensors: a review. , 2008, Analytica chimica acta.

[78]  Jinju Zheng,et al.  Piezoresistance behaviors of p-type 6H-SiC nanowires. , 2011, Chemical communications.

[79]  K. Zheng,et al.  Low-temperature in situ large strain plasticity of ceramic SiC nanowires and its atomic-scale mechanism. , 2007, Nano letters.

[80]  P. Komninou,et al.  Atomic-scale configuration of catalyst particles on GaN nanowires , 2008 .

[81]  Jing Wang,et al.  Silicon-based micro-gas sensors for detecting formaldehyde , 2009 .

[82]  Lipeng Xin,et al.  A simple catalyst-free route for large-scale synthesis of SiC nanowires , 2011 .

[83]  Joseph Wang,et al.  Electrochemical sensors for environmental monitoring: design, development and applications. , 2004, Journal of environmental monitoring : JEM.

[84]  T. Choi,et al.  Focused ion beam-assisted manipulation of single and double β-SiC nanowires and their thermal conductivity measurements by the four-point-probe 3-ω method , 2010, Nanotechnology.

[85]  Ilsoo Kim,et al.  Synthesis of p-type GaN nanowires. , 2013, Nanoscale.

[86]  N. Petkov,et al.  Semiconductor Nanowire Fabrication by Bottom-Up and Top-Down Paradigms , 2012 .

[87]  S. Reitzenstein,et al.  Direct comparison of catalyst-free and catalyst-induced GaN nanowires , 2010 .

[88]  Jason L. Johnson,et al.  Hydrogen sensing with Pt-functionalized GaN nanowires , 2009 .

[89]  Masakazu Aono,et al.  ZnO-Based Ultraviolet Photodetectors , 2010, Sensors.

[90]  Zheng Cui,et al.  Nanofabrication: Principles, Capabilities and Limits , 2008 .

[91]  Jacques I. Pankove,et al.  Comparison of GaN and 6H-SiC p-i-n photodetectors with excellent ultraviolet sensitivity and selectivity , 1999 .

[92]  Fang Zhang,et al.  Thermoelectric nanogenerators based on single Sb-doped ZnO micro/nanobelts. , 2012, ACS nano.

[93]  J. Giérak,et al.  Focused Ion Beam Micro- and Nanoengineering , 2007 .

[94]  Thomas J. Morrow,et al.  Nanowire sensors for multiplexed detection of biomolecules. , 2008, Current opinion in chemical biology.

[95]  Min-Seok Kang,et al.  Top-down fabrication of 4H-SiC nano-channel field effect transistors. , 2014, Journal of nanoscience and nanotechnology.

[96]  T. Schumann,et al.  Selective-area catalyst-free MBE growth of GaN nanowires using a patterned oxide layer , 2011, Nanotechnology.

[97]  E. Ōsawa,et al.  Vertically aligned nanowires from boron-doped diamond. , 2008, Nano letters.

[98]  M. Mills,et al.  Three-dimensional GaN/AlN nanowire heterostructures by separating nucleation and growth processes. , 2011, Nano letters.

[99]  Zhong Lin Wang,et al.  Highly Stretchable 2D Fabrics for Wearable Triboelectric Nanogenerator under Harsh Environments. , 2015, ACS nano.

[100]  S. Hersee,et al.  The controlled growth of GaN nanowires. , 2006, Nano letters.

[101]  Lawrence H. Robins,et al.  Steady-state and time-resolved photoluminescence from relaxed and strained GaN nanowires grown by catalyst-free molecular-beam epitaxy , 2008 .

[102]  Y. Sung,et al.  Growth and modulation of silicon carbide nanowires , 2004 .

[103]  ChenYifang Nanofabrication by electron beam lithography and its applications , 2015 .

[104]  J. Melngailis,et al.  Experimental investigation of electron transport properties of gallium nitride nanowires , 2008 .

[105]  C. Sarkar,et al.  MEMS and Nanotechnology for Gas Sensors , 2015 .

[106]  Nam-Trung Nguyen,et al.  Highly sensitive pressure sensors employing 3C-SiC nanowires fabricated on a free standing structure , 2018, Materials & Design.

[107]  Y. Isono,et al.  Strain engineering of core–shell silicon carbide nanowires for mechanical and piezoresistive characterizations , 2019, Nanotechnology.

[108]  Minbaek Lee,et al.  Self-powered environmental sensor system driven by nanogenerators , 2011 .

[109]  Xiao Tang,et al.  Effects of surface/interface stress on phonon properties and thermal conductivity in AlN/GaN/AlN heterostructural nanofilms , 2019, Applied Physics A.

[110]  Charles M. Lieber,et al.  Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors. , 2006, Nano letters.

[111]  J. Bell,et al.  From brittle to ductile: a structure dependent ductility of diamond nanothread. , 2015, Nanoscale.

[112]  Sunghoon Park,et al.  Fabrication of WO3 nanotube sensors and their gas sensing properties , 2014 .

[113]  Horacio D Espinosa,et al.  Effect of growth orientation and diameter on the elasticity of GaN nanowires. A combined in situ TEM and atomistic modeling investigation. , 2011, Nano letters.

[114]  U. Pietsch,et al.  Strain accommodation in Ga-assisted GaAs nanowires grown on silicon (111) , 2012, Nanotechnology.

[115]  H. Tan,et al.  III–V Semiconductor Single Nanowire Solar Cells: A Review , 2018, Advanced Materials Technologies.

[116]  Sihong Wang,et al.  A Hybrid Piezoelectric Structure for Wearable Nanogenerators , 2012, Advanced materials.

[117]  Mahesh Kumar,et al.  Binary group III-nitride based heterostructures: band offsets and transport properties , 2015 .

[118]  Y. Bando,et al.  Controllable Modification of SiC Nanowires Encapsulated in BN Nanotubes , 2005 .

[119]  Anne Henry,et al.  Photoluminescence studies of porous silicon carbide , 1995 .

[120]  Eva Monroy,et al.  Single GaN-Based Nanowires for Photodetection and Sensing Applications , 2013 .

[121]  Charles M. Lieber,et al.  Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. , 2005, Nano letters.

[122]  Hejun Li,et al.  Photoluminescence of hexagonal-shaped SiC nanowires prepared by sol–gel process , 2007 .

[123]  R. M. Tromp,et al.  The influence of the surface migration of gold on the growth of silicon nanowires , 2006, Nature.

[124]  Hsin-Li Chen,et al.  Silicon Nanowires as pH Sensor , 2005 .

[125]  G. Patriarche,et al.  Growth of GaN free-standing nanowires by plasma-assisted molecular beam epitaxy: structural and optical characterization , 2007 .

[126]  Caihong Liu,et al.  A Flexible GaN Nanowire Array‐Based Schottky‐Type Visible Light Sensor with Strain‐Enhanced Photoresponsivity , 2015 .

[127]  G. Shi,et al.  Graphene-based gas sensors , 2013 .

[128]  P. Voorhees,et al.  Catalyst incorporation at defects during nanowire growth. , 2012, Nano letters.

[129]  Meiyong Liao,et al.  Ultrahigh external quantum efficiency from thin SnO2 nanowire ultraviolet photodetectors. , 2011, Small.

[130]  N. Nguyen,et al.  Giant piezoresistive effect by optoelectronic coupling in a heterojunction , 2019, Nature Communications.

[131]  Younan Xia,et al.  One‐Dimensional Nanostructures: Synthesis, Characterization, and Applications , 2003 .

[132]  Wei Liu,et al.  Improvement in the Piezoelectric Performance of a ZnO Nanogenerator by a Combination of Chemical Doping and Interfacial Modification , 2016 .

[133]  Jan J. Boersema,et al.  Environmental Sciences, Sustainability, and Quality , 2009 .

[134]  Xinglai Zhang,et al.  Ultrasensitive and Highly Selective Photodetections of UV-A Rays Based on Individual Bicrystalline GaN Nanowire. , 2017, ACS applied materials & interfaces.

[135]  Liang-wu Lin Synthesis and optical property of large-scale centimetres-long silicon carbide nanowires by catalyst-free CVD route under superatmospheric pressure conditions. , 2011, Nanoscale.

[136]  W. Ning,et al.  Synthesis and electrical properties of p-type 3C–SiC nanowires , 2014 .

[137]  X. Zu,et al.  Atomistic simulation of brittle to ductile transition in GaN nanotubes , 2006 .

[138]  Y. He,et al.  Electrical Transport Properties of Single SiC NW-FET , 2013 .

[139]  Ilker S. Bayer,et al.  Advances in top-down and bottom-up surface nanofabrication: techniques, applications & future prospects. , 2012, Advances in colloid and interface science.

[140]  Ultrathin GaN nanowires: Electronic, thermal, and thermoelectric properties , 2014, 1405.4942.

[141]  Hao Shen,et al.  Size-dependent photoconductance in SnO2 nanowires. , 2005, Small.

[142]  Martin Kuball,et al.  Measuring the thermal conductivity of the GaN buffer layer in AlGaN/GaN HEMTs , 2015 .

[143]  I. Esqueda,et al.  Nanowire Field-Effect Transistors , 2018, Advanced Nanoelectronics.

[144]  Yifang Chen,et al.  Nanofabrication by electron beam lithography and its applications , 2015 .

[145]  Andrew F. Zhou,et al.  Nanoplasmonic 1D Diamond UV Photodetectors with High Performance. , 2019, ACS applied materials & interfaces.

[146]  Zhong Lin Wang,et al.  Microfibre–nanowire hybrid structure for energy scavenging , 2008, Nature.

[147]  S. S. Wang,et al.  A High-Responsivity GaN Nanowire UV Photodetector , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[148]  P. Chu,et al.  Experimental evidence for the quantum confinement effect in 3C-SiC nanocrystallites. , 2005, Physical review letters.

[149]  P. Dario,et al.  Fabrication and characterization of AlN-based flexible piezoelectric pressure sensor integrated into an implantable artificial pancreas , 2019, Scientific Reports.

[150]  M. Meyyappan,et al.  Nanowires in Thermoelectric Devices , 2011 .

[151]  N. Nguyen,et al.  Nano strain-amplifier: Making ultra-sensitive piezoresistance in nanowires possible without the need of quantum and surface charge effects , 2016, 1607.04531.

[152]  L. Ma,et al.  Size-dependent toughness and strength in defective 3C-SiC nanowires , 2019, Journal of Applied Physics.

[153]  S. Cloutier,et al.  Synthesis of diamond nanowires using atmospheric-pressure chemical vapor deposition. , 2010, Nano letters.

[154]  J. Myoung,et al.  Dielectrophoretic assembly of GaN nanowires for UV sensor applications , 2008 .

[155]  Xiaohong Shi,et al.  Catalyst-free growth of high purity 3C-SiC nanowires film on a graphite paper by sol-gel and ICVI carbothermal reduction , 2018 .

[156]  E. Bano,et al.  3C-Silicon Carbide Nanowire FET: An Experimental and Theoretical Approach , 2008, IEEE Transactions on Electron Devices.

[157]  G. Cheng,et al.  Highly ordered nanostructures of single crystalline GaN nanowires in anodic alumina membranes , 2000 .

[158]  M. Esashi,et al.  From MEMS to nanomachine , 2005 .

[159]  Ping Zhao,et al.  Sponge‐Like Piezoelectric Polymer Films for Scalable and Integratable Nanogenerators and Self‐Powered Electronic Systems , 2014 .

[160]  N. Xu,et al.  Synthesis of silicon carbide nanowires in a catalyst-assisted process , 2002 .

[161]  Long Lin,et al.  Replacing a Battery by a Nanogenerator with 20 V Output , 2012, Advanced materials.

[162]  R. LaPierre,et al.  Nanowires for energy: A review , 2018, Applied Physics Reviews.

[163]  Henrik Lund,et al.  Renewable energy strategies for sustainable development , 2007 .

[164]  X. Zu,et al.  Atomistic simulations of the size, orientation, and temperature dependence of tensile behavior in GaN nanowires , 2007 .

[165]  Z. Hassan,et al.  High performance room temperature GaN-nanowires hydrogen gas sensor fabricated by chemical vapor deposition (CVD) technique , 2013 .

[166]  Peidong Yang,et al.  Semiconductor nanowires for energy conversion , 2010, 2010 3rd International Nanoelectronics Conference (INEC).

[167]  Xinjian Li,et al.  Capacitive humidity sensing properties of SiC nanowires grown on silicon nanoporous pillar array , 2012 .

[168]  Jeffery W. Allen,et al.  Review on III-V Semiconductor Single Nanowire-Based Room Temperature Infrared Photodetectors , 2020, Materials.

[169]  Ampere A Tseng,et al.  Recent developments in nanofabrication using focused ion beams. , 2005, Small.

[170]  S. Sajadi,et al.  Types of Nanostructures , 2019, Interface Science and Technology.

[171]  Andrew A. Bettiol,et al.  ION BEAM LITHOGRAPHY AND NANOFABRICATION: A REVIEW , 2005 .

[172]  G. Meng,et al.  Large-scale synthesis of β-SiC nanowires by using mesoporous silica embedded with Fe nanoparticles , 2000 .

[173]  Jin Wang,et al.  Effect of different oxide thickness on the bending Young’s modulus of SiO2@SiC nanowires , 2016, Scientific Reports.

[174]  Jimmy Xu,et al.  Diamond nanowire--a challenge from extremes. , 2012, Nanoscale.

[175]  Ho Won Jang,et al.  One-Dimensional Oxide Nanostructures as Gas-Sensing Materials: Review and Issues , 2010, Sensors.

[176]  Ning Wang,et al.  Microstructures of gallium nitride nanowires synthesized by oxide-assisted method , 2001 .

[177]  Xudong Wang,et al.  Piezoelectric nanogenerators—Harvesting ambient mechanical energy at the nanometer scale , 2012 .

[178]  Sujuan Zhong,et al.  Thermal management applied laminar composites with SiC nanowires enhanced interface bonding strength and thermal conductivity. , 2019, Nanoscale.

[179]  Gyu-Chul Yi,et al.  Optical and field emission properties of thin single-crystalline GaN nanowires. , 2005, The journal of physical chemistry. B.

[180]  Lai-fei Cheng,et al.  Growth of SiC nanowires by low pressure chemical vapor infiltration using different catalysts , 2016 .

[181]  Xing Zhang,et al.  Thermal conductivity of SiC nanowire formed by combustion synthesis , 2008 .

[182]  O. Ambacher,et al.  Group III nitride and SiC based MEMS and NEMS: materials properties, technology and applications , 2007 .

[183]  Michael Schmidt,et al.  The curious case of thin-body Ge crystallization , 2011 .

[184]  Yuyan Shao,et al.  Graphene Based Electrochemical Sensors and Biosensors: A Review , 2010 .

[185]  Y. Arakawa,et al.  Room-temperature triggered single photon emission from a III-nitride site-controlled nanowire quantum dot. , 2014, Nano letters.

[186]  F. Gao,et al.  High‐Performance SiC Nanobelt Photodetectors with Long‐Term Stability Against 300 °C up to 180 Days , 2018, Advanced Functional Materials.

[187]  T. Pham,et al.  Chiral-Selective Formation of 1D Polymers Based on Ullmann-Type Coupling: The Role of the Metallic Substrate. , 2017, Small.

[188]  Xinni Zhang,et al.  P-type 3C-SiC nanowires and their optical and electrical transport properties. , 2011, Chemical communications.

[189]  M. Gao,et al.  Tuning the morphologies of SiC nanowires via the control of growth temperature, and their photoluminescence properties , 2008, Nanotechnology.

[190]  Ray R. LaPierre,et al.  A review of III–V nanowire infrared photodetectors and sensors , 2017 .

[191]  Yeshayahu Lifshitz,et al.  Oxide‐Assisted Growth of Semiconducting Nanowires , 2003 .

[192]  S. Averine,et al.  Solar Blind MSM-Photodetectors Based on AlxGa1-xN/GaN Heterostructures Grown by MOCVD , 2008, 2006 International Conference on Microwaves, Radar & Wireless Communications.

[193]  Michael N. Fairchild,et al.  GaN nanowire light emitting diodes based on templated and scalable nanowire growth , 2009 .

[194]  Zhong Lin Wang,et al.  Piezoelectric-nanowire-enabled power source for driving wireless microelectronics. , 2010, Nature communications.

[195]  Z. Hassan,et al.  Hydrogen gas sensing performance of GaN nanowires-based sensor at low operating temperature , 2014 .

[196]  M. Kneissl,et al.  High gain ultraviolet photodetectors based on AlGaN/GaN heterostructures for optical switching , 2011 .

[197]  R. S. Wagner,et al.  VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH , 1964 .

[198]  Zhong Lin Wang,et al.  Power generation with laterally packaged piezoelectric fine wires. , 2009, Nature nanotechnology.

[199]  M. Zacharias,et al.  Nanowire-based sensors. , 2010, Small.

[200]  Zhiyuan Gao,et al.  GaN nanowire arrays for high-output nanogenerators. , 2010, Journal of the American Chemical Society.

[201]  Zhongyuan Yu,et al.  Critical thickness and radius for axial heterostructure nanowires using finite-element method. , 2009, Nano letters.

[202]  Jason L. Johnson,et al.  Room temperature hydrogen detection using Pd-coated GaN nanowires , 2008 .

[203]  M. Stutzmann,et al.  Position-controlled growth of GaN nanowires and nanotubes on diamond by molecular beam epitaxy. , 2015, Nano letters.

[204]  Martin Eickhoff,et al.  Bias-Controlled Spectral Response in GaN/AlN Single-Nanowire Ultraviolet Photodetectors. , 2017, Nano letters.

[205]  Chengxin Wang,et al.  Flexible Transparent and Free-Standing SiC Nanowires Fabric: Stretchable UV Absorber and Fast-Response UV-A Detector. , 2018, Small.

[206]  Zetian Mi,et al.  Nanogenerators based on vertically aligned InN nanowires. , 2016, Nanoscale.

[207]  H. Daly,et al.  The Urgent Need for Rapid Transition to Global Environmental Sustainability , 1993, Environmental Conservation.

[208]  James H. Smith,et al.  Micromachined pressure sensors: review and recent developments , 1997 .

[209]  Ding Chen,et al.  The N and P co-doping-induced giant negative piezoresistance behaviors of SiC nanowires , 2019, Journal of Materials Chemistry C.

[210]  O. Brandt,et al.  Elastic versus Plastic Strain Relaxation in Coalesced GaN Nanowires: An X-Ray Diffraction Study , 2016, 1608.07420.

[211]  Mina Rais-Zadeh,et al.  Gallium Nitride as an Electromechanical Material , 2014, Journal of Microelectromechanical Systems.

[212]  Xuebin Wang,et al.  Electricity Generation based on One‐Dimensional Group‐III Nitride Nanomaterials , 2010, Advanced materials.

[213]  Sang‐Kwon Lee,et al.  Low-resistance ohmic contacts to SiC nanowires and their applications to field-effect transistors , 2008, Nanotechnology.

[214]  E. Janzén,et al.  Scalable quantum photonics with single color centers in silicon carbide , 2016, 2017 Conference on Lasers and Electro-Optics (CLEO).

[215]  O. Brandt,et al.  Surface-induced effects in GaN nanowires , 2011 .

[216]  P. Ku,et al.  A tensorial shear stress sensor based on light-emitting GaN nanopillars , 2019, Applied Physics Letters.

[217]  Joel J. P. C. Rodrigues,et al.  Wireless Sensor Networks: a Survey on Environmental Monitoring , 2011, J. Commun..

[218]  Pei Lin,et al.  Enhanced performance of ZnO piezotronic pressure sensor through electron-tunneling modulation of MgO nanolayer. , 2015, ACS applied materials & interfaces.

[219]  M. Chi,et al.  Rational defect introduction in silicon nanowires. , 2013, Nano letters.

[220]  Jinlei Yao,et al.  Investigation of catalyst-assisted growth of nonpolar GaN nanowires via a modified HVPE process. , 2020, Nanoscale.

[221]  G. Shen,et al.  Synthesis, characterization and field-emission properties of bamboo-like β-SiC nanowires , 2006, Nanotechnology.

[222]  E. Ōsawa,et al.  Vertically aligned diamond nanowires for DNA sensing. , 2008, Angewandte Chemie.

[223]  M. Fang,et al.  Synthesis of SiC nanowires by thermal evaporation method without catalyst assistant , 2013 .

[224]  Cell K. Y. Wong,et al.  Nanowire-based gas sensors , 2013 .

[225]  Yongho Choi,et al.  Growth and Characterization of GaN Nanowires for Hydrogen Sensors , 2009 .

[226]  Weiyou Yang,et al.  Precise control on the growth of SiC nanowires , 2012 .

[227]  Zhong Lin Wang,et al.  Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays , 2006, Science.

[228]  Naixue Xiong,et al.  Data prediction, compression, and recovery in clustered wireless sensor networks for environmental monitoring applications , 2016, Inf. Sci..

[229]  N. Gogneau,et al.  High Piezoelectric Conversion Properties of Axial InGaN/GaN Nanowires , 2018, Nanomaterials.

[230]  Fei Gao,et al.  Atomistic simulation of the size and orientation dependences of thermal conductivity in GaN nanowires , 2007 .

[231]  Y. Jeong,et al.  Nanowire Field Effect Transistors: Principles and Applications , 2014 .

[232]  Philippe Caroff,et al.  Vapor Phase Growth of Semiconductor Nanowires: Key Developments and Open Questions. , 2019, Chemical reviews.

[233]  H. Cui,et al.  Growth, modulation and electronic properties of Al2O3-coatings SiC nanotubesvia simple heating evaporation process , 2011 .

[234]  Clifford K. Ho,et al.  Overview of Sensors and Needs for Environmental Monitoring , 2005, Sensors (Basel, Switzerland).

[235]  Enyi Ye,et al.  Chemical routes to top-down nanofabrication. , 2013, Chemical Society reviews.

[236]  Joy M. Barker,et al.  Spontaneously grown GaN and AlGaN nanowires , 2006 .

[237]  Chao Liu,et al.  Ultrafast, superhigh gain visible-blind UV detector and optical logic gates based on nonpolar a-axial GaN nanowire. , 2014, Nanoscale.

[238]  Zhong Lin Wang,et al.  Side-by-side silicon carbide–silica biaxial nanowires: Synthesis, structure, and mechanical properties , 2000 .

[239]  R. Zheng,et al.  Low‐Dimensional Structure Vacuum‐Ultraviolet‐Sensitive (λ < 200 nm) Photodetector with Fast‐Response Speed Based on High‐Quality AlN Micro/Nanowire , 2015, Advanced materials.

[240]  F. Gao,et al.  Controlled Al-doped single-crystalline 6H-SiC nanowires , 2008 .

[241]  K. Kavanagh,et al.  Misfit dislocations in nanowire heterostructures , 2010 .

[242]  M. Liao,et al.  Suspended Single‐Crystal Diamond Nanowires for High‐Performance Nanoelectromechanical Switches , 2010, Advanced materials.

[243]  Pingjuan Niu,et al.  Giant UV photoresponse of a GaN nanowire photodetector through effective Pt nanoparticle coupling , 2017 .

[244]  K. Zekentes,et al.  SiC nanowires: material and devices , 2011 .

[245]  E. Monroy,et al.  AlGaN-based UV photodetectors , 2001 .

[246]  K. Bertness,et al.  Nucleation conditions for catalyst-free GaN nanowires , 2007 .

[247]  X. Guo,et al.  Direct Observation of Super‐Plasticity of Beta‐SiC Nanowires at Low Temperature , 2007 .

[248]  J. Eymery,et al.  Flexible Capacitive Piezoelectric Sensor with Vertically Aligned Ultralong GaN Wires. , 2018, ACS applied materials & interfaces.

[249]  K D Wise,et al.  Microfabrication techniques for integrated sensors and microsystems. , 1991, Science.

[250]  Joo-Yun Jung,et al.  Lithium-doped zinc oxide nanowires-polymer composite for high performance flexible piezoelectric nanogenerator. , 2014, ACS nano.

[251]  Yuan-Yao Li,et al.  Synthesis of High-Purity Silicon Carbide Nanowires by a Catalyst-Free Arc-Discharge Method , 2007 .

[252]  Jing Zhu,et al.  Elastic Properties of GaN Nanowires: Revealing the influence of planar defects on Young's modulus at nanoscale , 2015, Microscopy and Microanalysis.

[253]  Rami T. Elafandy,et al.  Droop-Free, Reliable, and High-Power InGaN/GaN Nanowire Light-Emitting Diodes for Monolithic Metal-Optoelectronics. , 2016, Nano letters.

[254]  Anne Henry,et al.  Comparison of Bottom-Up and Top-Down 3C-SiC NWFETs , 2016 .

[255]  Ye Li,et al.  High-temperature hydrogen sensor based on platinum nanoparticle-decorated SiC nanowire device , 2014 .

[256]  M. Schvartzman,et al.  Guided growth of horizontal GaN nanowires on quartz and their transfer to other substrates. , 2014, ACS nano.

[257]  L. Ocola,et al.  Nanopatterning of ultrananocrystalline diamond nanowires , 2012, Nanotechnology.

[258]  Haibo Zeng,et al.  A Comprehensive Review of One-Dimensional Metal-Oxide Nanostructure Photodetectors , 2009, Sensors.

[259]  F. Giannazzo,et al.  Nanoscale transport properties at silicon carbide interfaces , 2010 .

[260]  Nam-Trung Nguyen,et al.  The Piezoresistive Effect of SiC for MEMS Sensors at High Temperatures: A Review , 2015, Journal of Microelectromechanical Systems.

[261]  Sang‐Woo Kim,et al.  Mechanically Powered Transparent Flexible Charge‐Generating Nanodevices with Piezoelectric ZnO Nanorods , 2009 .

[262]  Youfan Hu,et al.  Recent progress in piezoelectric nanogenerators as a sustainable power source in self-powered systems and active sensors , 2015 .

[263]  A. R. Kermany,et al.  Ultra-high strain in epitaxial silicon carbide nanostructures utilizing residual stress amplification , 2017, 1701.02791.

[264]  M. Moskovits,et al.  Modification of the electronic properties of GaN nanowires by Mn doping , 2007 .

[265]  Jinju Zheng,et al.  Large-scale synthesis of hydrophobic SiC/C nanocables with enhanced electrical properties , 2011 .

[266]  Fei Ma,et al.  Flexible fiber nanogenerator with 209 V output voltage directly powers a light-emitting diode. , 2013, Nano letters.

[267]  Shui-Tong Lee,et al.  Gallium nitride nanowires doped with silicon , 2003 .

[268]  E. Monroy,et al.  Effect of the nanowire diameter on the linearity of the response of GaN-based heterostructured nanowire photodetectors , 2018, Nanotechnology.

[269]  Wooyoung Lee,et al.  Contact characteristics in GaN nanowire devices , 2006 .

[270]  M. Marso,et al.  Doping concentration of GaN nanowires determined by opto-electrical measurements. , 2008, Nano letters.

[271]  Robert S. Okojie,et al.  4H-SiC Piezoresistive Pressure Sensors at 800 °C With Observed Sensitivity Recovery , 2015, IEEE Electron Device Letters.

[272]  Wei Wang,et al.  Recent Developments for Flexible Pressure Sensors: A Review , 2018, Micromachines.

[273]  Kyu-Sik Shin,et al.  Well controlled assembly of silicon nanowires by nanowire transfer method , 2007 .

[274]  Zhong Lin Wang,et al.  Tuning Light Emission of a Pressure-Sensitive Silicon/ZnO Nanowires Heterostructure Matrix through Piezo-phototronic Effects. , 2016, ACS nano.

[275]  Yafei Zhang,et al.  SiC Nanowires Synthesized by Rapidly Heating a Mixture of SiO and Arc-Discharge Plasma Pretreated Carbon Black , 2008, Nanoscale research letters.

[276]  Hudie Yuan,et al.  Synthesis of centimeter-scale ultra-long SiC nanowires by simple catalyst-free chemical vapor deposition , 2011 .

[277]  Chun-Sing Lee,et al.  Silicon nanowires as chemical sensors , 2003 .

[278]  Marko Loncar,et al.  Fabrication of diamond nanowires for quantum information processing applications , 2009, 0908.0352.

[279]  Hong-an Ma,et al.  Crystal Growth and Characterization of Diamond from Carbonyl Iron Catalyst under High Pressure and High Temperature Conditions , 2011 .

[280]  Xianquan Meng,et al.  Thermal annealing effects on the optoelectronic characteristics of fully nanowire-based UV detector , 2016, Journal of Materials Science: Materials in Electronics.

[281]  J. Ha,et al.  Stable and High Piezoelectric Output of GaN Nanowire-Based Lead-Free Piezoelectric Nanogenerator by Suppression of Internal Screening , 2018, Nanomaterials.

[282]  Cimoo Song,et al.  Commercial vision of silicon-based inertial sensors , 1998 .

[283]  Jens Bauer,et al.  VLS growth of GaN nanowires on various substrates , 2008 .

[284]  B. Shirinzadeh,et al.  A wearable and highly sensitive pressure sensor with ultrathin gold nanowires , 2014, Nature Communications.

[285]  J T L Thong,et al.  Improving the NH3 gas sensitivity of ZnO nanowire sensors by reducing the carrier concentration , 2008, Nanotechnology.

[286]  Weiguo Hu,et al.  Piezotronic Effect in Polarity-Controlled GaN Nanowires. , 2015, ACS nano.

[287]  C. Ning,et al.  Photoluminescence of GaN nanowires of different crystallographic orientations. , 2007 .

[288]  Z. Hassan,et al.  The influence of growth temperatures on the characteristics of GaN nanowires , 2011 .

[289]  S. Cardoso,et al.  Radiation sensors based on GaN microwires , 2018 .

[290]  Umasankar Yogeswaran,et al.  A Review on the Electrochemical Sensors and Biosensors Composed of Nanowires as Sensing Material , 2008, Sensors.

[291]  M. Massi,et al.  Wide bandgap semiconductor thin films for piezoelectric and piezoresistive MEMS sensors applied at high temperatures: an overview , 2014 .

[292]  Xinghong Zhang,et al.  Synthesis and characterization of ultralong SiC nanowires with unique optical properties, excellent thermal stability and flexible nanomechanical properties , 2017, Scientific Reports.

[293]  Haitao Liu,et al.  Preparation and growth mechanism of β-SiC nanowires by using a simplified thermal evaporation method. , 2015 .

[294]  Zheyao Wang,et al.  Silicon nanowire pH sensors fabricated with CMOS compatible sidewall mask technology , 2019, Sensors and Actuators B: Chemical.

[295]  Yongde Xia,et al.  SiC Nanowire Sponges as Electropressure Sensors , 2019, ACS Applied Nano Materials.

[296]  Weiping Cai,et al.  Fast-Response, Sensitivitive and Low-Powered Chemosensors by Fusing Nanostructured Porous Thin Film and IDEs-Microheater Chip , 2013, Scientific Reports.

[297]  P. Hemmer,et al.  A diamond nanowire single-photon source. , 2009, Nature nanotechnology.

[298]  V. Kaushik,et al.  On-Demand CMOS-Compatible Fabrication of Ultrathin Self-Aligned SiC Nanowire Arrays , 2018, Nanomaterials.

[299]  Zhong Lin Wang,et al.  High output nanogenerator based on assembly of GaN nanowires , 2011, Nanotechnology.