Exome sequencing identifies truncating mutations in human SERPINF1 in autosomal-recessive osteogenesis imperfecta.

[1]  Christian Gilissen,et al.  A de novo paradigm for mental retardation , 2010, Nature Genetics.

[2]  Christian Gilissen,et al.  Exome sequencing identifies WDR35 variants involved in Sensenbrenner syndrome. , 2010, American journal of human genetics.

[3]  P. Lapunzina,et al.  Identification of a frameshift mutation in Osterix in a patient with recessive osteogenesis imperfecta. , 2010, American journal of human genetics.

[4]  Christian Gilissen,et al.  De novo mutations of SETBP1 cause Schinzel-Giedion syndrome , 2010, Nature Genetics.

[5]  P. Byers,et al.  Mutations in the gene encoding the RER protein FKBP65 cause autosomal-recessive osteogenesis imperfecta. , 2010, American journal of human genetics.

[6]  J. Tombran-Tink,et al.  PEDF in angiogenic eye diseases. , 2010, Current molecular medicine.

[7]  P. Choong,et al.  The pathophysiological role of PEDF in bone diseases. , 2010, Current molecular medicine.

[8]  C. Rotimi,et al.  Lack of cyclophilin B in osteogenesis imperfecta with normal collagen folding. , 2010, The New England journal of medicine.

[9]  P. Byers,et al.  Homozygosity for a missense mutation in SERPINH1, which encodes the collagen chaperone protein HSP47, results in severe recessive osteogenesis imperfecta. , 2010, American journal of human genetics.

[10]  Wei-zhong Chang,et al.  Prolyl 3-hydroxylase 1 and CRTAP are mutually stabilizing in the endoplasmic reticulum collagen prolyl 3-hydroxylation complex. , 2010, Human molecular genetics.

[11]  G. Pals,et al.  PPIB mutations cause severe osteogenesis imperfecta. , 2009, American journal of human genetics.

[12]  K. Lindblad-Toh,et al.  A Missense Mutation in the SERPINH1 Gene in Dachshunds with Osteogenesis Imperfecta , 2009, PLoS genetics.

[13]  R. Steiner,et al.  Osteogenesis imperfecta: Recent findings shed new light on this once well-understood condition , 2009, Genetics in Medicine.

[14]  Y. Ishikawa,et al.  Biochemical Characterization of the Prolyl 3-Hydroxylase 1·Cartilage-associated Protein·Cyclophilin B Complex* , 2009, The Journal of Biological Chemistry.

[15]  Joan C. Marini,et al.  Bone: Use of bisphosphonates in children—proceed with caution , 2009, Nature Reviews Endocrinology.

[16]  R. Kennedy,et al.  Characterization of PEDF: A multi‐functional serpin family protein , 2009, Journal of cellular biochemistry.

[17]  Hironori Ito,et al.  Bisphosphonate Therapy for Osteogenesis Imperfecta , 2009 .

[18]  John J. Mitchell,et al.  CRTAP and LEPRE1 mutations in recessive osteogenesis imperfecta , 2008, Human mutation.

[19]  Y. Ishikawa,et al.  The Rough Endoplasmic Reticulum-resident FK506-binding Protein FKBP65 Is a Molecular Chaperone That Interacts with Collagens* , 2008, Journal of Biological Chemistry.

[20]  C. Tifft,et al.  Prolyl 3-hydroxylase 1 deficiency causes a recessive metabolic bone disorder resembling lethal/severe osteogenesis imperfecta , 2007, Nature Genetics.

[21]  J. Mulvihill,et al.  Deficiency of cartilage-associated protein in recessive lethal osteogenesis imperfecta. , 2006, The New England journal of medicine.

[22]  F. Glorieux,et al.  CRTAP Is Required for Prolyl 3- Hydroxylation and Mutations Cause Recessive Osteogenesis Imperfecta , 2006, Cell.

[23]  C. Barnstable,et al.  Molecular phylogeny of the antiangiogenic and neurotrophic serpin, pigment epithelium derived factor in vertebrates , 2006, BMC Genomics.

[24]  J. Whisstock,et al.  An overview of the serpin superfamily , 2006, Genome Biology.

[25]  I. Fariñas,et al.  Pigment epithelium–derived factor is a niche signal for neural stem cell renewal , 2006, Nature Neuroscience.

[26]  P. Campochiaro,et al.  Adenoviral vector-delivered pigment epithelium-derived factor for neovascular age-related macular degeneration: results of a phase I clinical trial. , 2006, Human gene therapy.

[27]  Napoleone Ferrara,et al.  Angiogenesis as a therapeutic target , 2005, Nature.

[28]  C. Barnstable,et al.  PEDF and the serpins: phylogeny, sequence conservation, and functional domains. , 2005, Journal of structural biology.

[29]  P. Choong,et al.  Localization of Pigment Epithelium-Derived Factor in Growing Mouse Bone , 2005, Calcified Tissue International.

[30]  L. Tatò,et al.  Intravenous Neridronate in Children With Osteogenesis Imperfecta: A Randomized Controlled Study , 2004, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[31]  C. Barnstable,et al.  Osteoblasts and osteoclasts express PEDF, VEGF-A isoforms, and VEGF receptors: possible mediators of angiogenesis and matrix remodeling in the bone. , 2004, Biochemical and biophysical research communications.

[32]  C. Barnstable,et al.  Therapeutic prospects for PEDF: more than a promising angiogenesis inhibitor. , 2003, Trends in molecular medicine.

[33]  N. Bouck,et al.  Pigment epithelium–derived factor regulates the vasculature and mass of the prostate and pancreas , 2003, Nature Medicine.

[34]  S. Shaltiel,et al.  Secretion of pigment epithelium-derived factor. Mutagenic study. , 2003, European journal of biochemistry.

[35]  K. Siegel,et al.  Brief Assessment of Motor Function: Reliability and Concurrent Validity of the Gross Motor Scale , 2003, American journal of physical medicine & rehabilitation.

[36]  Christina Meyer,et al.  Mapping the Type I Collagen-binding Site on Pigment Epithelium-derived Factor , 2002, The Journal of Biological Chemistry.

[37]  N. Bouck PEDF: anti-angiogenic guardian of ocular function. , 2002, Trends in molecular medicine.

[38]  J. Deng,et al.  The Novel Zinc Finger-Containing Transcription Factor Osterix Is Required for Osteoblast Differentiation and Bone Formation , 2002, Cell.

[39]  P. Campochiaro,et al.  Clinical protocol. An open-label, phase I, single administration, dose-escalation study of ADGVPEDF.11D (ADPEDF) in neovascular age-related macular degeneration (AMD). , 2001, Human gene therapy.

[40]  N. Bouck,et al.  Prevention of ischemia-induced retinopathy by the natural ocular antiangiogenic agent pigment epithelium-derived factor , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[41]  N. Bulleid,et al.  Hsp47: a molecular chaperone that interacts with and stabilizes correctly‐folded procollagen , 2000, The EMBO journal.

[42]  W. Benedict,et al.  Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. , 1999, Science.

[43]  Napoleone Ferrara,et al.  VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation , 1999, Nature Medicine.

[44]  G. Wesolowski,et al.  Alendronate mechanism of action: geranylgeraniol, an intermediate in the mevalonate pathway, prevents inhibition of osteoclast formation, bone resorption, and kinase activation in vitro. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[45]  S. Saga,et al.  Isolation, Purification, and Characterization of a Collagen-associated Serpin, Caspin, Produced by Murine Colon Adenocarcinoma Cells* , 1998, The Journal of Biological Chemistry.

[46]  L. Maquat,et al.  A rule for termination-codon position within intron-containing genes: when nonsense affects RNA abundance. , 1998, Trends in biochemical sciences.

[47]  I. Rodriguez,et al.  Organization, evolutionary conservation, expression and unusual Alu density of the human gene for pigment epithelium-derived factor, a unique neurotrophic serpin. , 1996, Molecular vision.

[48]  M. Raghunath,et al.  Delayed triple helix formation of mutant collagen from patients with osteogenesis imperfecta. , 1994, Journal of molecular biology.

[49]  G. Chader,et al.  Pigment epithelium-derived factor: neurotrophic activity and identification as a member of the serine protease inhibitor gene family. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[50]  J. Tombran-Tink,et al.  PEDF: a pigment epithelium-derived factor with potent neuronal differentiative activity. , 1991, Experimental eye research.

[51]  P. Byers,et al.  Perinatal lethal osteogenesis imperfecta (OI type II): a biochemically heterogeneous disorder usually due to new mutations in the genes for type I collagen. , 1988, American journal of human genetics.

[52]  P. Byers,et al.  Cysteine in the triple-helical domain of one allelic product of the alpha 1(I) gene of type I collagen produces a lethal form of osteogenesis imperfecta. , 1984, The Journal of biological chemistry.

[53]  J. Hirsch,et al.  Internal deletion in a collagen gene in a perinatal lethal form of osteogenesis imperfecta , 1983, Nature.

[54]  D. Prockop,et al.  Synthesis and processing of a type I procollagen containing shortened pro-alpha 1(I) chains by fibroblasts from a patient with osteogenesis imperfecta. , 1983, The Journal of biological chemistry.

[55]  G. Barsh,et al.  Reduced secretion of structurally abnormal type I procollagen in a form of osteogenesis imperfecta. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[56]  D. Sillence,et al.  Genetic heterogeneity in osteogenesis imperfecta. , 1979, Journal of medical genetics.

[57]  Sakae Tanaka,et al.  PEDF regulates osteoclasts via osteoprotegerin and RANKL. , 2010, Biochemical and biophysical research communications.

[58]  J. Marini,et al.  Null mutations in LEPRE1 and CRTAP cause severe recessive osteogenesis imperfecta , 2009, Cell and Tissue Research.

[59]  P. Esposito,et al.  Osteogenesis Imperfecta. , 1928, Proceedings of the Royal Society of Medicine.