All‐electron basis sets for heavy elements

All‐electron (AE) calculations for chemical systems containing atoms of elements beyond krypton are becoming increasingly accessible and common in many fields of computational molecular science. The type, the size, and the internal construction of AE basis sets for heavy elements depend critically on the level of quantum chemical theory and, most importantly, on the way relativistic effects are treated. For this reason, general‐purpose basis sets for heavy elements are rare; instead, different AE basis sets have been developed that are adapted to the requirements and peculiarities of each (approximate) relativistic treatment. Ranging from fully relativistic four‐component approaches to more popular scalar relativistic approximations, today there exist complete families of AE basis sets that can cover most research needs and can be employed in diverse applications for the proper description of various molecular and atomic properties including electronic structure, chemical reactivity, and a wide range of spectroscopic parameters.

[1]  C. T. Campos,et al.  Triple zeta quality basis sets for atoms Rb through Xe: application in CCSD(T) atomic and molecular property calculations , 2013 .

[2]  J. Grant Hill,et al.  Gaussian basis sets for molecular applications , 2013 .

[3]  Frank Neese,et al.  All-electron scalar relativistic basis sets for the 6p elements , 2012, Theoretical Chemistry Accounts.

[4]  P. Pyykkö Relativistic effects in chemistry: more common than you thought. , 2012, Annual review of physical chemistry.

[5]  K. Dyall Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the 7p elements, with atomic and molecular applications , 2012, Theoretical Chemistry Accounts.

[6]  K. Hirao,et al.  The Douglas-Kroll-Hess approach. , 2012, Chemical reviews.

[7]  Michael Dolg,et al.  Relativistic pseudopotentials: their development and scope of applications. , 2012, Chemical reviews.

[8]  Michael Dolg,et al.  Segmented Contracted Douglas-Kroll-Hess Adapted Basis Sets for Lanthanides. , 2011, Journal of chemical theory and computation.

[9]  W. Scherer,et al.  Relativistic effects on the topology of the electron density , 2011 .

[10]  K. Dyall Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the 6d elements Rf–Cn , 2011 .

[11]  F. Neese,et al.  Interplay of Correlation and Relativistic Effects in Correlated Calculations on Transition-Metal Complexes: The (Cu2O2)(2+) Core Revisited. , 2011, Journal of chemical theory and computation.

[12]  Michael Dolg,et al.  Pseudopotentials and modelpotentials , 2011 .

[13]  Frank Neese,et al.  All-Electron Scalar Relativistic Basis Sets for the Actinides , 2011 .

[14]  Frank Neese,et al.  Revisiting the Atomic Natural Orbital Approach for Basis Sets: Robust Systematic Basis Sets for Explicitly Correlated and Conventional Correlated ab initio Methods? , 2011, Journal of chemical theory and computation.

[15]  FRANCESCO AQUILANTE,et al.  MOLCAS 7: The Next Generation , 2010, J. Comput. Chem..

[16]  K. Dyall Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the 4s, 5s, 6s, and 7s elements. , 2009, The journal of physical chemistry. A.

[17]  Frank Neese,et al.  All-Electron Scalar Relativistic Basis Sets for the Lanthanides. , 2009, Journal of chemical theory and computation.

[18]  Frank Neese,et al.  Accurate theoretical chemistry with coupled pair models. , 2009, Accounts of chemical research.

[19]  F. Neese,et al.  Efficient, approximate and parallel Hartree–Fock and hybrid DFT calculations. A ‘chain-of-spheres’ algorithm for the Hartree–Fock exchange , 2009 .

[20]  M. Reiher,et al.  Relativistic Quantum Chemistry: The Fundamental Theory of Molecular Science , 2009 .

[21]  Roland Lindh,et al.  New relativistic atomic natural orbital basis sets for lanthanide atoms with applications to the Ce diatom and LuF3. , 2008, The journal of physical chemistry. A.

[22]  J. Cirera,et al.  Exchange coupling in CuIIGdIII dinuclear complexes: A theoretical perspective , 2008 .

[23]  M. Solà,et al.  Importance of the basis set for the spin-state energetics of iron complexes. , 2008, The journal of physical chemistry. A.

[24]  Frank Neese,et al.  All-Electron Scalar Relativistic Basis Sets for Third-Row Transition Metal Atoms. , 2008, Journal of chemical theory and computation.

[25]  M. Reiher,et al.  The electronic structure of the tris(ethylene) complexes [M(C2H4)3] (M=Ni, Pd, and Pt): a combined experimental and theoretical study. , 2007, Chemistry.

[26]  Roland Lindh,et al.  Unbiased auxiliary basis sets for accurate two-electron integral approximations. , 2007, The Journal of chemical physics.

[27]  K. Dyall,et al.  Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the lanthanides La–Lu , 2007 .

[28]  K. Dyall Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the actinides Ac–Lr , 2007 .

[29]  P. Fan,et al.  High-order electron-correlation methods with scalar relativistic and spin-orbit corrections. , 2007, The Journal of chemical physics.

[30]  Markus Reiher,et al.  Regular no-pair Dirac operators: Numerical study of the convergence of high-order Douglas–Kroll–Hess transformations , 2007 .

[31]  H. Tatewaki,et al.  Gaussian-type function set without prolapse for the Dirac-Fock-Roothaan equation (II): 80Hg through 103Lr. , 2006, The Journal of chemical physics.

[32]  K. Dyall Relativistic Quadruple-Zeta and Revised Triple-Zeta and Double-Zeta Basis Sets for the 4p, 5p, and 6p Elements , 2006 .

[33]  Markus Reiher,et al.  Exact decoupling of the Dirac Hamiltonian. IV. Automated evaluation of molecular properties within the Douglas-Kroll-Hess theory up to arbitrary order. , 2006, The Journal of chemical physics.

[34]  Yoshihiro Watanabe,et al.  Relativistic Gaussian basis sets for molecular calculations: Fully optimized single‐family exponent basis sets for HHg , 2006, J. Comput. Chem..

[35]  Markus Reiher,et al.  Douglas–Kroll–Hess Theory: a relativistic electrons-only theory for chemistry , 2006 .

[36]  Roland Lindh,et al.  New relativistic ANO basis sets for transition metal atoms. , 2005, The journal of physical chemistry. A.

[37]  B. Roos,et al.  New relativistic ANO basis sets for actinide atoms , 2005 .

[38]  F. Neese,et al.  Calculation of electric-field gradients based on higher-order generalized Douglas-Kroll transformations. , 2005, The Journal of chemical physics.

[39]  K. Fægri Even tempered basis sets for four-component relativistic quantum chemistry , 2005 .

[40]  C. Wüllen Sixth-order Douglas–Kroll: two-component reference data for one-electron ions from 1s12 through 4f72 , 2005 .

[41]  D. Cremer,et al.  A gauge-independent zeroth-order regular approximation to the exact relativistic Hamiltonian--formulation and applications. , 2005, The Journal of chemical physics.

[42]  Markus Reiher,et al.  Exact decoupling of the Dirac Hamiltonian. II. The generalized Douglas-Kroll-Hess transformation up to arbitrary order. , 2004, The Journal of chemical physics.

[43]  H. Tatewaki,et al.  Gaussian-type function set without prolapse 1H through 83Bi for the Dirac-Fock-Roothaan equation. , 2004, The Journal of chemical physics.

[44]  Markus Reiher,et al.  Exact decoupling of the Dirac Hamiltonian. I. General theory. , 2004, The Journal of chemical physics.

[45]  M. Reiher,et al.  Correlated ab initio calculations of spectroscopic parameters of SnO within the framework of the higher-order generalized Douglas-Kroll transformation. , 2004, The Journal of chemical physics.

[46]  Roland Lindh,et al.  Main group atoms and dimers studied with a new relativistic ANO basis set , 2004 .

[47]  D. Cremer,et al.  On the physical meaning of the ZORA Hamiltonian , 2003 .

[48]  Erik Van Lenthe,et al.  Optimized Slater‐type basis sets for the elements 1–118 , 2003, J. Comput. Chem..

[49]  Markus Reiher,et al.  The generalized Douglas–Kroll transformation , 2002 .

[50]  M. Filatov On representation of the Hamiltonian matrix elements in relativistic regular approximation , 2002 .

[51]  Bernd Schimmelpfennig,et al.  The restricted active space (RAS) state interaction approach with spin-orbit coupling , 2002 .

[52]  O. Matsuoka,et al.  Relativistic Gaussian basis sets for molecular calculations: Cs–Hg , 2001 .

[53]  F. Matthias Bickelhaupt,et al.  Chemistry with ADF , 2001, J. Comput. Chem..

[54]  K. Fægri Relativistic Gaussian basis sets for the elements K – Uuo , 2001 .

[55]  J. Olsen,et al.  Basis-set convergence of the two-electron Darwin term , 2000 .

[56]  Trygve Helgaker,et al.  Highly accurate calculations of molecular electronic structure , 1999 .

[57]  Christoph van Wüllen,et al.  Molecular density functional calculations in the regular relativistic approximation: Method, application to coinage metal diatomics, hydrides, fluorides and chlorides, and comparison with first-order relativistic calculations , 1998 .

[58]  F. E. Jorge,et al.  Accurate universal Gaussian basis set for all atoms of the Periodic Table , 1998 .

[59]  Lucas Visscher,et al.  Dirac-Fock atomic electronic structure calculations using different nuclear charge distributions , 1997 .

[60]  G. Frenking,et al.  Topological analysis of electron density distribution taken from a pseudopotential calculation , 1997, J. Comput. Chem..

[61]  Evert Jan Baerends,et al.  The zero order regular approximation for relativistic effects: the effect of spin-orbit coupling in closed shell molecules. , 1996 .

[62]  Manuela Merchán,et al.  Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions , 1995 .

[63]  Marco Häser,et al.  Auxiliary basis sets to approximate Coulomb potentials , 1995 .

[64]  Evert Jan Baerends,et al.  Relativistic total energy using regular approximations , 1994 .

[65]  K. Dyall An exact separation of the spin‐free and spin‐dependent terms of the Dirac–Coulomb–Breit Hamiltonian , 1994 .

[66]  Evert Jan Baerends,et al.  Relativistic regular two‐component Hamiltonians , 1993 .

[67]  Mariusz Klobukowski,et al.  Well-tempered Gaussian basis sets for the calculation of matrix Hartree-Fock wavefunctions , 1993 .

[68]  Werner Kutzelnigg,et al.  Rates of convergence of the partial‐wave expansions of atomic correlation energies , 1992 .

[69]  A. Savin,et al.  Contribution to the electron distribution analysis. I. Shell structure of atoms , 1991 .

[70]  B. Miguel,et al.  A comparison of the geometrical sequence formula and the well-tempered formulas for generating GTO basis orbital exponents , 1990 .

[71]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[72]  O. Matsuoka,et al.  Relativistic well-tempered Gaussian basis sets , 1987 .

[73]  I. Lindgren,et al.  A relativistic pair equation projected onto positive energy states , 1987 .

[74]  Peter R. Taylor,et al.  General contraction of Gaussian basis sets. I. Atomic natural orbitals for first‐ and second‐row atoms , 1987 .

[75]  W. Nieuwpoort,et al.  The use of gaussian nuclear charge distributions for the calculation of relativistic electronic wavefunctions using basis set expansions , 1987 .

[76]  Lindgren,et al.  Comment on relativistic wave equations and negative-energy states. , 1986, Physical review. A, General physics.

[77]  R. Dreizler,et al.  A Griffin–Hill–Wheeler version of the Hartree–Fock equations , 1986 .

[78]  Richard E. Stanton,et al.  Kinetic balance: A partial solution to the problem of variational safety in Dirac calculations , 1984 .

[79]  Stephen Wilson,et al.  UNIVERSAL BASIS SETS AND TRANSFERABILITY OF INTEGRALS , 1978 .

[80]  W. Nieuwpoort,et al.  Universal atomic basis sets , 1978 .

[81]  Frank Neese,et al.  The ORCA program system , 2012 .

[82]  M. Reiher Relativistic Douglas–Kroll–Hess theory , 2012 .

[83]  Frank Neese,et al.  Some Thoughts on the Scope of Linear Scaling Self-Consistent Field Electronic Structure Methods , 2011 .

[84]  Daniel Kats,et al.  Local Approximations for an Efficient and Accurate Treatment of Electron Correlation and Electron Excitations in Molecules , 2011 .

[85]  W. Schwarz An Introduction to Relativistic Quantum Chemistry , 2010 .

[86]  K. Dyall,et al.  Revised relativistic basis sets for the 5d elements Hf–Hg , 2009 .

[87]  W. Kutzelnigg Relativistic corrections to the partial wave expansion of two-electron atoms† , 2008 .

[88]  Frank Neese,et al.  Geometries of Third-Row Transition-Metal Complexes from Density-Functional Theory. , 2008, Journal of chemical theory and computation.

[89]  K. Dyall Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the 4d elements Y–Cd , 2007 .

[90]  A. Savin,et al.  Contribution to the electron distribution analysis , 1999 .

[91]  M. Zerner,et al.  Spin-averaged Hartree-Fock procedure for spectroscopic calculations: The absorption spectrum of Mn2+ in ZnS crystals , 1997 .

[92]  P. Taylor,et al.  Atomic Natural Orbital (ANO) Basis Sets for Quantum Chemical Calculations , 1991 .

[93]  Pekka Pyykkö,et al.  Relativistic Quantum Chemistry , 1978 .

[94]  John C. Slater,et al.  The self-consistent field for molecules and solids , 1974 .

[95]  J. Desclaux Relativistic Dirac-Fock expectation values for atoms with Z = 1 to Z = 120 , 1973 .