Efficient Tensor Decomposition

This chapter studies the problem of decomposing a tensor into a sum of constituent rank one tensors. While tensor decompositions are very useful in designing learning algorithms and data analysis, they are NP-hard in the worst-case. We will see how to design efficient algorithms with provable guarantees under mild assumptions, and using beyond worst-case frameworks like smoothed analysis.

[1]  Sham M. Kakade,et al.  A spectral algorithm for learning Hidden Markov Models , 2008, J. Comput. Syst. Sci..

[2]  Anima Anandkumar,et al.  Tensor decompositions for learning latent variable models , 2012, J. Mach. Learn. Res..

[3]  Aditya Bhaskara,et al.  Uniqueness of Tensor Decompositions with Applications to Polynomial Identifiability , 2013, COLT.

[4]  Jean-Francois Cardoso,et al.  Super-symmetric decomposition of the fourth-order cumulant tensor. Blind identification of more sources than sensors , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[5]  Giorgio Ottaviani,et al.  On Generic Identifiability of 3-Tensors of Small Rank , 2011, SIAM J. Matrix Anal. Appl..

[6]  Tselil Schramm,et al.  Fast spectral algorithms from sum-of-squares proofs: tensor decomposition and planted sparse vectors , 2015, STOC.

[7]  Tselil Schramm,et al.  A Robust Spectral Algorithm for Overcomplete Tensor Decomposition , 2019, COLT.

[8]  Elchanan Mossel,et al.  Learning nonsingular phylogenies and hidden Markov models , 2005, STOC '05.

[9]  Lieven De Lathauwer,et al.  Fourth-Order Cumulant-Based Blind Identification of Underdetermined Mixtures , 2007, IEEE Transactions on Signal Processing.

[10]  David P. Woodruff,et al.  Relative Error Tensor Low Rank Approximation , 2017, Electron. Colloquium Comput. Complex..

[11]  Ankur Moitra,et al.  Algorithmic Aspects of Machine Learning , 2018 .

[12]  C. Matias,et al.  Identifiability of parameters in latent structure models with many observed variables , 2008, 0809.5032.

[13]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[14]  Sanjoy Dasgupta,et al.  Maximum Likelihood Estimation for Mixtures of Spherical Gaussians is NP-hard , 2017, J. Mach. Learn. Res..

[15]  Mikhail Belkin,et al.  The More, the Merrier: the Blessing of Dimensionality for Learning Large Gaussian Mixtures , 2013, COLT.

[16]  Christopher J. Hillar,et al.  Most Tensor Problems Are NP-Hard , 2009, JACM.

[17]  J. Kruskal Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics , 1977 .

[18]  Aditya Bhaskara,et al.  Smoothed Analysis in Unsupervised Learning via Decoupling , 2018, 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS).

[19]  Johan Håstad,et al.  Tensor Rank is NP-Complete , 1989, ICALP.

[20]  Tengyu Ma,et al.  Polynomial-Time Tensor Decompositions with Sum-of-Squares , 2016, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).

[21]  Ankur Moitra,et al.  Settling the Polynomial Learnability of Mixtures of Gaussians , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[22]  Sham M. Kakade,et al.  Learning mixtures of spherical gaussians: moment methods and spectral decompositions , 2012, ITCS '13.

[23]  Kane,et al.  Beyond the Worst-Case Analysis of Algorithms , 2020 .

[24]  Qingqing Huang,et al.  Learning Mixtures of Gaussians in High Dimensions , 2015, STOC.

[25]  Santosh S. Vempala,et al.  Smoothed Analysis of Discrete Tensor Decomposition and Assemblies of Neurons , 2018, NeurIPS.

[26]  Anima Anandkumar,et al.  Analyzing Tensor Power Method Dynamics in Overcomplete Regime , 2014, J. Mach. Learn. Res..

[27]  Aditya Bhaskara,et al.  Smoothed analysis of tensor decompositions , 2013, STOC.

[28]  V. N. Bogaevski,et al.  Matrix Perturbation Theory , 1991 .

[29]  Tengyu Ma,et al.  On the optimization landscape of tensor decompositions , 2017, Mathematical Programming.

[30]  Santosh S. Vempala,et al.  Fourier PCA and robust tensor decomposition , 2013, STOC.

[31]  Mikhail Belkin,et al.  Polynomial Learning of Distribution Families , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[32]  Richard A. Harshman,et al.  Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .