Observer design with guaranteed RMS gain for discrete-time LPV systems with Markovian jumps

In this paper we consider the problem of designing state observers with guaranteed power-to-power (RMS) gain for a class of stochastic discrete-time linear systems that possess both measurable parameter variations and Markovian jumps in their dynamics. It is shown in the paper that an upper bound on the RMS gain of the observer can be characterized in terms of feasibility of a family of parameter-dependent linear matrix inequalities (LMIs). Any feasible solution to these LMIs can then be used to explicitly construct a parameter-varying jump observer that guarantees the desired performance level. This design framework is then specialized to a problem of state estimation for a linear parameter-varying plant whose state measurements are available through a lossy Bernoulli channel. Two numerical examples illustrate the results. Copyright © 2008 John Wiley & Sons, Ltd.

[1]  Raja Sengupta,et al.  A bounded real lemma for jump systems , 2003, IEEE Trans. Autom. Control..

[2]  Marcelo D. Fragoso,et al.  H ∞ filtering for Markovian jump linear systems , 2002, Int. J. Syst. Sci..

[3]  Alexandre Trofino,et al.  Mode-Independent ${\cal H}_{\infty}$ Filters for Markovian Jump Linear Systems , 2006, IEEE Transactions on Automatic Control.

[4]  R. P. Marques,et al.  Discrete-Time Markov Jump Linear Systems , 2004, IEEE Transactions on Automatic Control.

[5]  M. Fragoso,et al.  Stability Results for Discrete-Time Linear Systems with Markovian Jumping Parameters , 1993 .

[6]  Giuseppe Carlo Calafiore,et al.  The scenario approach to robust control design , 2006, IEEE Transactions on Automatic Control.

[7]  Wilson J. Rugh,et al.  Research on gain scheduling , 2000, Autom..

[8]  Karolos M. Grigoriadis,et al.  LPV Systems with parameter-varying time delays: analysis and control , 2001, Autom..

[9]  I.E. Kose,et al.  A direct characterization of L/sub 2/-gain controllers for LPV systems , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[10]  Zikuan Liu,et al.  Robust H∞ filtering for polytopic uncertain time-delay systems with Markov jumps , 2002, Comput. Electr. Eng..

[11]  A. Packard,et al.  Robust performance of linear parametrically varying systems using parametrically-dependent linear feedback , 1994 .

[12]  K. Loparo,et al.  Stochastic stability properties of jump linear systems , 1992 .

[13]  Roberto Tempo,et al.  Probabilistic design of LPV control systems , 2003, Autom..

[14]  Shengyuan Xu,et al.  Robust H∞ filtering for uncertain Markovian jump systems with mode-dependent time delays , 2003, IEEE Trans. Autom. Control..

[15]  P. Gahinet,et al.  A convex characterization of gain-scheduled H∞ controllers , 1995, IEEE Trans. Autom. Control..

[16]  Peng Shi,et al.  Robust filtering for jumping systems with mode-dependent delays , 2006, Signal Process..

[17]  James Lam,et al.  Fixed-order robust H/sub /spl infin// filter design for Markovian jump systems with uncertain switching probabilities , 2006, IEEE Transactions on Signal Processing.

[18]  Carsten W. Scherer,et al.  LPV control and full block multipliers , 2001, Autom..

[19]  Bruno Sinopoli,et al.  Foundations of Control and Estimation Over Lossy Networks , 2007, Proceedings of the IEEE.

[20]  William Leithead,et al.  Survey of gain-scheduling analysis and design , 2000 .

[21]  Manfred Morari,et al.  Linear parameter varying model predictive contr for steam generator level control , 1997 .

[22]  Pierre Apkarian,et al.  Advanced gain-scheduling techniques for uncertain systems , 1998, IEEE Trans. Control. Syst. Technol..

[23]  João Pedro Hespanha,et al.  A Survey of Recent Results in Networked Control Systems , 2007, Proceedings of the IEEE.

[24]  Karolos M. Grigoriadis,et al.  A unified algebraic approach to linear control design , 1998 .

[25]  Andres Marcos,et al.  Linear parameter-varying detection filter design for a Boeing 747-100/200 aircraft , 2005 .

[26]  Peng-Yung Woo,et al.  Gain Scheduled LPV H∞ Control Based on LMI Approach for a Robotic Manipulator , 2002, J. Field Robotics.

[27]  V.K. Goyal,et al.  Estimation from lossy sensor data: jump linear modeling and Kalman filtering , 2004, Third International Symposium on Information Processing in Sensor Networks, 2004. IPSN 2004.

[28]  P. Seiler,et al.  Optimal pseudo-steady-state estimators for systems with Markovian intermittent measurements , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[29]  El-Kébir Boukas,et al.  Stability of stochastic systems with jumps , 1996 .

[30]  Bruno Sinopoli,et al.  Kalman filtering with intermittent observations , 2004, IEEE Transactions on Automatic Control.

[31]  M. Fragoso,et al.  ℋ︁∞ filtering for discrete‐time linear systems with Markovian jumping parameters† , 2003 .

[32]  R. Tempo,et al.  Probabilistic robust design of LPV control systems , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[33]  J. Lam,et al.  Fixed-Order Robust Filter Design for Markovian Jump Systems With Uncertain Switching Probabilities , 2006 .