Ion-mediated hopping electrode polarization model for impedance spectra of CH3NH3PbI3

Methylammonium lead iodide (CH3NH3PbI3) is one of the most attractive materials for optoelectronic applications, and it is the most typical absorber in perovskite solar cells, which are unprecedentedly successful devices in terms of power conversion efficiency. In this work, the conductivity and capacitance spectra of symmetrically contacted Au/CH3NH3PbI3/Au thick pellets are measured via impedance spectroscopy at different temperatures in dark equilibrium. The experimental conductivity spectra are parameterized and showed to follow the formalism of hopping DC conductivity in the CH3NH3PbI3 bulk. The presence of several regimes for the general Jonscher's “universal” conductivity–frequency response is highlighted and associated with the ionic–electronic overlapping conductivities. For the capacitance spectra, the general features of electrode polarization capacitance at the CH3NH3PbI3/Au interfaces are identified but yet are found to be in disagreement with some trends of classical ionic conductivity models, unable to separate different contributions. Accordingly, an analytical model is proposed accounting for hopping processes where the low frequency activation energy is split into ionic and electronic components. Our parameterizations and analytical model discern between the bulk/interface and ionic/electronic phenomena and estimate the multiple activation energies in this hybrid halide perovskite.

[1]  G. Garcia‐Belmonte,et al.  Direct observation of surface polarization at hybrid perovskite/Au interfaces by dark transient experiments , 2020 .

[2]  Martin A. Green,et al.  Solar cell efficiency tables (Version 55) , 2019, Progress in Photovoltaics: Research and Applications.

[3]  C. Brabec,et al.  Light intensity modulated impedance spectroscopy (LIMIS) in all-solid-state solar cells at open-circuit , 2019, Nano Energy.

[4]  High-Energy Optical Transitions and Optical Constants of CH3NH3PbI3 Measured by Spectroscopic Ellipsometry and Spectrophotometry , 2019, The Journal of Physical Chemistry C.

[5]  G. Garcia‐Belmonte,et al.  Light capacitances in silicon and perovskite solar cells , 2019, Solar Energy.

[6]  D. Sarma,et al.  Phase Diagram and Dielectric Properties of MA1–xFAxPbI3 , 2019, ACS Energy Letters.

[7]  C. Brabec,et al.  Ionic dipolar switching hinders charge collection in perovskite solar cells with normal and inverted hysteresis , 2019, Solar Energy Materials and Solar Cells.

[8]  G. Garcia‐Belmonte,et al.  On the Utilization of Temperature-Sweeping Capacitive Techniques to Evaluate Band-Gap Defect Densities in Photovoltaic Perovskites. , 2019, The journal of physical chemistry letters.

[9]  P. Norris,et al.  Ultrahigh energy density CH3NH3PbI3 perovskite based supercapacitor with fast discharge , 2019, Electrochimica Acta.

[10]  Konstantinos Petridis,et al.  Inorganic and Hybrid Perovskite Based Laser Devices: A Review , 2019, Materials.

[11]  D. Głowienka,et al.  The domination of ionic conductivity in tetragonal phase of the organometal halide perovskite CH3NH3PbI3-xClx , 2018, Solid State Sciences.

[12]  J. Bisquert,et al.  Device Physics of Hybrid Perovskite Solar cells: Theory and Experiment , 2018 .

[13]  J. Bisquert,et al.  Unravelling the role of vacancies in lead halide perovskite through electrical switching of photoluminescence , 2018, Nature Communications.

[14]  P. Umari,et al.  Infrared Dielectric Screening Determines the Low Exciton Binding Energy of Metal-Halide Perovskites. , 2018, The journal of physical chemistry letters.

[15]  A. Pasquarello,et al.  Origin of low electron–hole recombination rate in metal halide perovskites , 2018 .

[16]  Anup Pradhan Sakhya,et al.  Dielectric relaxation of CH 3 NH 3 PbI 3 thin film , 2017 .

[17]  G. Rignanese,et al.  Van der Waals Interactions and Anharmonicity in the Lattice Vibrations, Dielectric Constants, Effective Charges, and Infrared Spectra of the Organic–Inorganic Halide Perovskite CH3NH3PbI3 , 2017 .

[18]  Anup Pradhan Sakhya,et al.  Dielectric relaxation and Ac conductivity of perovskites CH3NH3PbX3 (X = Br, I) , 2017 .

[19]  P. Norris,et al.  Role of the colossal frequency and temperature dependent dielectric constant in the performance of the organo-metallic tri-halide perovskites , 2017 .

[20]  G. T. Mola,et al.  Conductivity of CH 3 NH 3 PbI 3 thin film perovskite stored in ambient atmosphere , 2017 .

[21]  M. Grätzel,et al.  The Nature of Ion Conduction in Methylammonium Lead Iodide: A Multimethod Approach , 2017, Angewandte Chemie.

[22]  J. A. Töfflinger,et al.  Determination of the complex refractive index and optical bandgap of CH3NH3PbI3 thin films , 2017 .

[23]  Paul A. Basore,et al.  A manufacturing cost estimation method with uncertainty analysis and its application to perovskite on glass photovoltaic modules , 2017 .

[24]  Bernard Geffroy,et al.  Direct Experimental Evidence of Halide Ionic Migration under Bias in CH3NH3PbI3–xClx-Based Perovskite Solar Cells Using GD-OES Analysis , 2017 .

[25]  Xu Zhou,et al.  Quantification of light-enhanced ionic transport in lead iodide perovskite thin films and its solar cell applications , 2016, Light: Science & Applications.

[26]  Jinsong Huang,et al.  Ultrafast ion migration in hybrid perovskite polycrystalline thin films under light and suppression in single crystals. , 2016, Physical chemistry chemical physics : PCCP.

[27]  W. Zhang,et al.  Investigation of Optical and Dielectric Constants of Organic-InorganicCH3NH3PbI3 Perovskite Thin Films , 2016 .

[28]  H. Morkoç,et al.  Optical properties of the organic-inorganic hybrid perovskite C H 3 N H 3 Pb I 3 : Theory and experiment , 2016 .

[29]  S. Mhaisalkar,et al.  Perovskite Materials for Light‐Emitting Diodes and Lasers , 2016, Advanced materials.

[30]  L. Kronik,et al.  Optical phonons in methylammonium lead halide perovskites and implications for charge transport , 2016, 1607.08541.

[31]  Lijun Zhang,et al.  Fast Diffusion of Native Defects and Impurities in Perovskite Solar Cell Material CH3NH3PbI3 , 2016 .

[32]  Nazifah Islam,et al.  Polarization and Dielectric Study of Methylammonium Lead Iodide Thin Film to Reveal its Nonferroelectric Nature under Solar Cell Operating Conditions , 2016 .

[33]  Wei Zhang,et al.  Metal halide perovskites for energy applications , 2016, Nature Energy.

[34]  H. Xue,et al.  Orientation Effects of CH3NH3+ on CH3NH3PbI3 Stability and Photoelectric Properties , 2016 .

[35]  Mool C. Gupta,et al.  Charge transport in bulk CH3NH3PbI3 perovskite , 2016 .

[36]  G. Garcia‐Belmonte,et al.  Ionic charging by local imbalance at interfaces in hybrid lead halide perovskites , 2016 .

[37]  M. Kanatzidis,et al.  Dielectric and Thermodynamic Signatures of Low-Temperature Glassy Dynamics in the Hybrid Perovskites CH3NH3PbI3 and HC(NH2)2PbI3. , 2016, The journal of physical chemistry letters.

[38]  N. Park,et al.  Organic-inorganic halide perovskite photovoltaics : from fundamentals to device architectures , 2016 .

[39]  M. Grätzel,et al.  Ionic Conductivity of Organic–Inorganic Perovskites: Relevance for Long-Time and Low Frequency Behavior , 2016 .

[40]  P. Parilla,et al.  Electronic Structure and Optical Properties of α-CH3NH3PbBr3 Perovskite Single Crystal. , 2015, The journal of physical chemistry letters.

[41]  T. Murakami,et al.  Optical transitions in hybrid perovskite solar cells: Ellipsometry, density functional theory, and quantum efficiency analyses for CH3NH3PbI3 , 2015, 1507.08824.

[42]  Michael Grätzel,et al.  The Significance of Ion Conduction in a Hybrid Organic-Inorganic Lead-Iodide-Based Perovskite Photosensitizer. , 2015, Angewandte Chemie.

[43]  G. Boiteux,et al.  Electrode polarization vs. Maxwell-Wagner-Sillars interfacial polarization in dielectric spectra of materials: Characteristic frequencies and scaling laws. , 2015, The Journal of chemical physics.

[44]  Christophe Ballif,et al.  Complex Refractive Index Spectra of CH3NH3PbI3 Perovskite Thin Films Determined by Spectroscopic Ellipsometry and Spectrophotometry. , 2015, The journal of physical chemistry letters.

[45]  Gao Xiangdong,et al.  Optical and Electrical Properties of CH 3 NH 3 PbI 3 Perovskite Thin Films Transformed from PbO-PbI 2 Hybrid Films , 2015 .

[46]  Nam-Gyu Park,et al.  Parameters Affecting I-V Hysteresis of CH3NH3PbI3 Perovskite Solar Cells: Effects of Perovskite Crystal Size and Mesoporous TiO2 Layer. , 2014, The journal of physical chemistry letters.

[47]  Nakita K. Noel,et al.  Anomalous Hysteresis in Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[48]  Aron Walsh,et al.  Electronic structure of hybrid halide perovskite photovoltaic absorbers , 2014, 1401.6993.

[49]  H. Snaith Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells , 2013 .

[50]  Aron Walsh,et al.  Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles , 2013, 1309.4215.

[51]  Nam-Gyu Park,et al.  Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell , 2013 .

[52]  P. Maass,et al.  Fundamental questions relating to ion conduction in disordered solids , 2008, 0803.2107.

[53]  D. Samatowicz,et al.  Electronic conductivity in Na2O–FeO–P2O5 glasses , 2003 .

[54]  Jeppe C. Dyre,et al.  Universality of ac conduction in disordered solids , 2000 .

[55]  B. U. Felderhof,et al.  Dielectric constant of the Drude-Lorentz model of a nonpolar fluid , 1997 .

[56]  DENSITY OF STATES IN THE DRUDE-LORENTZ MODEL OF A NONPOLAR FLUID , 1996 .

[57]  Patel,et al.  Estimation of the free-charge-carrier concentration in fast-ion conducting Na2S-B2S3 glasses from an analysis of the frequency-dependent conductivity. , 1994, Physical review. B, Condensed matter.

[58]  S. Elliott Frequency-dependent conductivity in ionically and electronically conducting amorphous solids , 1994 .

[59]  Hiroshi Suga,et al.  Dielectric study of CH3NH3PbX3 (X = Cl, Br, I) , 1992 .

[60]  Liu,et al.  Limiting behavior of ac conductivity in ionically conducting crystals and glasses: A new universality. , 1991, Physical review letters.

[61]  M. White,et al.  Alkylammonium lead halides. Part 2. CH3NH3PbX3 (X = Cl, Br, I) perovskites: cuboctahedral halide cages with isotropic cation reorientation , 1990 .

[62]  A. Owens,et al.  The diffusion-controlled relaxation model for ionic transport in glasses , 1989 .

[63]  A. Mansingh AC conductivity of amorphous semiconductors , 1980 .

[64]  A. Jonscher,et al.  DC and AC conductivity in hopping electronic systems , 1979 .

[65]  A. K. Jonscher,et al.  The ‘universal’ dielectric response , 1977, Nature.

[66]  Chulho Kim,et al.  Electrode Polarization of Glasses , 1976 .

[67]  G. Pike,et al.  ac Conductivity of Glasses , 1972 .

[68]  P. Jacobs,et al.  Polarization in potassium chloride crystals , 1966 .

[69]  P. Drude Zur Elektronentheorie der Metalle , 1900 .