Mechanical properties of ZnO nanowires

One-dimensional solids like nanowires and nanotubes are potential materials for future nanoscale sensors and actuators. Due to their unique length scale, they exhibit superior mechanical properties and other length scale dependent phenomena. In this paper, we report experimental investigations on the mechanical properties of ZnO nanowires. We have designed a MEMS test-bed for mechanical characterization of nanowires. The MEMS device exploits the mechanics of post-buckling deformation of slender columns to achieve very high force and displacement resolution. The small size of the test-bed allows for in situ experimentation inside analytical chambers, such as SEM and TEM. We present microscale version of pick-and-place as a generic specimen preparation and manipulation technique for experimentation on individual nanostructures. We performed experiments on ZnO nanowires inside a scanning electron microscope (SEM) and estimated the Young's modulus to be about 21 GPa and the fracture strain to vary from 5% to 15%.

[1]  Z. Wang Nanobelts, Nanowires, and Nanodiskettes of Semiconducting Oxides—From Materials to Nanodevices , 2003 .

[2]  M. Kadota,et al.  Piezoelectric and optical properties of ZnO films deposited by an electron–cyclotron-resonance sputtering system , 2002 .

[3]  Elisa Riedo,et al.  Elastic property of vertically aligned nanowires. , 2005, Nano letters.

[4]  Enge Wang,et al.  Dual-mode mechanical resonance of individual ZnO nanobelts , 2003 .

[5]  Density-functional study of the structure and stability of ZnO surfaces , 2002, cond-mat/0206549.

[6]  Rodney S. Ruoff,et al.  An integrated MEMS system for in-situ mechanical testing of nanostructures , 2004 .

[7]  A. Desai,et al.  Design and modeling of a MEMS pico-Newton loading/sensing device , 2006 .

[8]  V. Lazorenko,et al.  Zinc oxide – analogue of GaN with new perspective possibilities , 2004 .

[9]  N. Harrison,et al.  AB INITIO STUDY OF ZNO (1010) SURFACE RELAXATION , 1994 .

[10]  Hanchen Huang,et al.  Are surfaces elastically softer or stiffer , 2004 .

[11]  Te-Hua Fang,et al.  Nanolithography and nanoindentation of tantalum-oxide nanowires and nanodots using scanning probe microscopy , 2004 .

[12]  Charles M. Lieber,et al.  Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes , 1997 .

[13]  Bin Wu,et al.  Mechanical properties of ultrahigh-strength gold nanowires , 2005, Nature materials.

[14]  Zhong Lin Wang,et al.  Piezoelectric Characterization of Individual Zinc Oxide Nanobelt Probed by Piezoresponse Force Microscope , 2004 .

[15]  X. Bai,et al.  In situ mechanical properties of individual ZnO nanowires and the mass measurement of nanoparticles , 2006 .

[16]  J. Robertson,et al.  Determination of mechanical properties of carbon nanotubes and vertically aligned carbon nanotube forests using nanoindentation , 2003 .

[17]  Yong-Kweon Kim,et al.  Direct nanomechanical machining of gold nanowires using a nanoindenter and an atomic force microscope , 2005 .

[18]  Lawrence S. Kramer,et al.  The near-net-shape manufacturing of affordable titanium components for the M777 lightweight howitzer , 2004 .

[19]  E. Toimil-Molares,et al.  Nanoindentation of single crystal and polycrystalline copper nanowires , 2005, Proceedings Electronic Components and Technology, 2005. ECTC '05..

[20]  H. Morkoç,et al.  A COMPREHENSIVE REVIEW OF ZNO MATERIALS AND DEVICES , 2005 .

[21]  Heon-Jin Choi,et al.  Single-crystal gallium nitride nanotubes , 2003, Nature.

[22]  Min Zhou,et al.  Orientation and size dependence of the elastic properties of zinc oxide nanobelts , 2005 .

[23]  D. Polla,et al.  Properties of piezoelectric thin films for micromechanical devices and systems , 1991, [1991] Proceedings. IEEE Micro Electro Mechanical Systems.

[24]  K. Méténier,et al.  Elastic Modulus of Ordered and Disordered Multiwalled Carbon Nanotubes , 1999 .

[25]  Chang Q. Sun,et al.  Bond-order?bond-length?bond-strength (bond-OLS) correlation mechanism for the shape-and-size dependence of a nanosolid , 2002 .

[26]  Polymer nanowire elastic moduli measured with digital pulsed force mode AFM. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[27]  Zhiyong Fan,et al.  Electrical and optical properties of ZnO nanowires , 2004, SPIE Micro + Nano Materials, Devices, and Applications.

[28]  Zhong Lin Wang Nanostructures of zinc oxide , 2004 .

[29]  Vijay B. Shenoy,et al.  Size-dependent elastic properties of nanosized structural elements , 2000 .

[30]  Yang Wang,et al.  Direct Mechanical Measurement of the Tensile Strength and Elastic Modulus of Multiwalled Carbon Nanotubes , 2002, Microscopy and Microanalysis.

[31]  I. B. Kobiakov Elastic, piezoelectric and dielectric properties of ZnO and CdS single crystals in a wide range of temperatures , 1980 .

[32]  Horacio D Espinosa,et al.  An electromechanical material testing system for in situ electron microscopy and applications. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Y. S. Zhang,et al.  Size dependence of Young's modulus in ZnO nanowires. , 2006, Physical review letters.

[34]  Zhenting Dai,et al.  Mechanical and electrostatic properties of carbon nanotubes and nanowires , 2001 .

[35]  Krueger,et al.  Self-consistent electronic-structure calculations of the (101-bar0) surfaces of the wurtzite compounds ZnO and CdS. , 1994, Physical review. B, Condensed matter.

[36]  Heon-Jin Choi,et al.  Gallium nitride nanowires with a metal initiated metal‐organic chemical vapor deposition (MOCVD) approach , 2004 .

[37]  A. Fischer-Cripps A review of analysis methods for sub-micron indentation testing☆ , 2000 .

[38]  W. D. Heer,et al.  Electrostatic deflections and electromechanical resonances of carbon nanotubes , 1999, Science.

[39]  Amit V. Desai,et al.  Test Bed for Mechanical Characterization of Nanowires , 2005 .

[40]  Younan Xia,et al.  One‐Dimensional Nanostructures: Synthesis, Characterization, and Applications , 2003 .

[41]  HengAn Wu,et al.  Molecular dynamics study on mechanics of metal nanowire , 2006 .

[42]  Varlei Rodrigues,et al.  Evidence for spontaneous spin-polarized transport in magnetic nanowires. , 2003, Physical review letters.

[43]  Håkan Olin,et al.  Force interactions and adhesion of gold contacts using a combined atomic force microscope and transmission electron microscope , 2002 .

[44]  R. Ruoff,et al.  Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load , 2000, Science.

[45]  F. S. Hickernell,et al.  Direct characterization of ZnO films in composite resonators by the resonance spectrum method , 1999, 1999 IEEE Ultrasonics Symposium. Proceedings. International Symposium (Cat. No.99CH37027).

[46]  Zhong Lin Wang Zinc oxide nanostructures: growth, properties and applications , 2004 .

[47]  A. Mukhopadhyay,et al.  Mechanical characterization of microwave sintered zinc oxide , 2001 .

[48]  Yuyuan Tian,et al.  Adsorbate effect on the mechanical stability of atomically thin metallic wires , 2002 .