Evaluating Energy Differences on a Quantum Computer with Robust Phase Estimation.

We adapt the robust phase estimation algorithm to the evaluation of energy differences between two eigenstates using a quantum computer. This approach does not require controlled unitaries between auxiliary and system registers or even a single auxiliary qubit. As a proof of concept, we calculate the energies of the ground state and low-lying electronic excitations of a hydrogen molecule in a minimal basis on a cloud quantum computer. The denominative robustness of our approach is then quantified in terms of a high tolerance to coherent errors in the state preparation and measurement. Conceptually, we note that all quantum phase estimation algorithms ultimately evaluate eigenvalue differences.

[1]  M. Suzuki,et al.  General theory of fractal path integrals with applications to many‐body theories and statistical physics , 1991 .

[2]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[3]  A. Kitaev,et al.  Fermionic Quantum Computation , 2000, quant-ph/0003137.

[4]  E. Farhi,et al.  A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.

[5]  M. Head‐Gordon,et al.  Simulated Quantum Computation of Molecular Energies , 2005, Science.

[6]  D. Berry,et al.  Entanglement-free Heisenberg-limited phase estimation , 2007, Nature.

[7]  Byron Drury,et al.  Constructive quantum Shannon decomposition from Cartan involutions , 2008, 0806.4015.

[8]  H. M. Wiseman,et al.  Demonstrating Heisenberg-limited unambiguous phase estimation without adaptive measurements , 2008, 0809.3308.

[9]  Andrew M. Childs On the Relationship Between Continuous- and Discrete-Time Quantum Walk , 2008, 0810.0312.

[10]  P. Love,et al.  The Bravyi-Kitaev transformation for quantum computation of electronic structure. , 2012, The Journal of chemical physics.

[11]  John Preskill,et al.  Quantum Algorithms for Quantum Field Theories , 2011, Science.

[12]  Matthew B. Hastings,et al.  Faster phase estimation , 2013, Quantum Inf. Comput..

[13]  M. Wolf,et al.  Undecidability of the spectral gap , 2015, Nature.

[14]  Joel J. Wallman,et al.  Bounding quantum gate error rate based on reported average fidelity , 2015, 1501.04932.

[15]  Dmitri Maslov,et al.  Basic circuit compilation techniques for an ion-trap quantum machine , 2016, ArXiv.

[16]  Peter Maunz,et al.  Demonstration of qubit operations below a rigorous fault tolerance threshold with gate set tomography , 2016, Nature Communications.

[17]  Dmitri Maslov,et al.  Toward the first quantum simulation with quantum speedup , 2017, Proceedings of the National Academy of Sciences.

[18]  Ryan LaRose,et al.  Quantum-assisted quantum compiling , 2018, Quantum.

[19]  B. Terhal,et al.  Quantum phase estimation of multiple eigenvalues for small-scale (noisy) experiments , 2018, New Journal of Physics.

[20]  Rolando D. Somma,et al.  Quantum eigenvalue estimation via time series analysis , 2019, New Journal of Physics.

[21]  J. Ignacio Cirac,et al.  Faster ground state preparation and high-precision ground energy estimation with fewer qubits , 2017, Journal of Mathematical Physics.

[22]  John Chiaverini,et al.  Trapped-ion quantum computing: Progress and challenges , 2019, Applied Physics Reviews.

[23]  Alán Aspuru-Guzik,et al.  Quantum Chemistry in the Age of Quantum Computing. , 2018, Chemical reviews.

[24]  Erik Nielsen,et al.  Probing quantum processor performance with pyGSTi , 2020, Quantum Science and Technology.

[25]  Morten Kjaergaard,et al.  Superconducting Qubits: Current State of Play , 2019, Annual Review of Condensed Matter Physics.

[26]  R. Blume-Kohout,et al.  Detecting and tracking drift in quantum information processors , 2019, Nature Communications.

[27]  R. Blume-Kohout,et al.  Detecting crosstalk errors in quantum information processors , 2019, Quantum.

[28]  Lin Lin,et al.  Near-optimal ground state preparation , 2020, Quantum.