Three-dimensional fabrication and characterisation of core-shell nano-columns using electron beam patterning of Ge-doped SiO2

A focused electron beam in a scanning transmission electron microscope (STEM) is used to create arrays of core-shell structures in a specimen of amorphous SiO2 doped with Ge. The same electron microscope is then used to measure the changes that occurred in the specimen in three dimensions using electron tomography. The results show that transformations in insulators that have been subjected to intense irradiation using charged particles can be studied directly in three dimensions. The fabricated structures include core-shell nano-columns, sputtered regions, voids, and clusters.

[1]  M. I. Ojovan,et al.  Nano-scale quasi-melting of alkali-borosilicate glasses under electron irradiation , 2010 .

[2]  A. Bleloch,et al.  Three-dimensional shapes and structures of lamellar-twinned fcc nanoparticles using ADF STEM. , 2009, Journal of electron microscopy.

[3]  Grant S. Henderson,et al.  The structure of GeO2–SiO2 glasses and melts: A Raman spectroscopy study , 2009 .

[4]  P. Midgley,et al.  Electron tomography and holography in materials science. , 2009, Nature materials.

[5]  L. C. Gontard,et al.  Three‐dimensional shapes and spatial distributions of Pt and PtCr catalyst nanoparticles on carbon black , 2008, Journal of microscopy.

[6]  I. Kamiya,et al.  Two methods to prepare nanorings/nanoholes for the fabrication of vertical nanotransistors , 2008, Nanotechnology.

[7]  Dye-Zone A. Chen,et al.  Extraordinary optical transmission through subwavelength holes in a polaritonic silicon dioxide film , 2007 .

[8]  M. Tan,et al.  Photon-induced conduction modulation in SiO2 thin films embedded with Ge nanocrystals , 2007 .

[9]  Gerhard Klimeck,et al.  Performance analysis of a Ge/Si core/shell nanowire field-effect transistor. , 2006, Nano letters.

[10]  Way-Seen Wang,et al.  A miniaturized germanium-doped silicon dioxide-based surface plasmon resonance waveguide sensor for immunoassay detection. , 2006, Biosensors & bioelectronics.

[11]  Ning Yang,et al.  Aharonov-Bohm phase operations on a double-barrier nanoring charge qubit , 2006, cond-mat/0604195.

[12]  R. Egerton,et al.  Beam-Induced Damage to Thin Specimens in an Intense Electron Probe , 2005, Microscopy and Microanalysis.

[13]  J Verbeeck,et al.  Model based quantification of EELS spectra. , 2004, Ultramicroscopy.

[14]  M. Malac,et al.  Radiation damage in the TEM and SEM. , 2004, Micron.

[15]  T. Finstad,et al.  Mechanisms of void formation in Ge implanted SiO2 films , 2003 .

[16]  J. Spence,et al.  Nanoring formation by direct-write inorganic electron-beam lithography , 2003 .

[17]  A. Kolobov,et al.  Formation of Ge nanocrystals embedded in aSiO2matrix: Transmission electron microscopy, x-ray absorption, and optical studies , 2003 .

[18]  Charles M. Lieber,et al.  Epitaxial core–shell and core–multishell nanowire heterostructures , 2002, Nature.

[19]  T. Finstad,et al.  Nanocrystal and nanocluster formation and oxidation in annealed Ge-implanted SiO2 films , 2002 .

[20]  S. Nepijko,et al.  Crystallisation of Ge nanoclusters in SiO2 caused by electron irradiation in TEM , 2001 .

[21]  C. Boothroyd,et al.  Electron-beam-induced damage in amorphous SiO2 and the direct fabrication of silicon nanostructures , 1998 .

[22]  J. Cazaux,et al.  Some considerations on the electric field induced in insulators by electron bombardment , 1986 .

[23]  P. Feibelman,et al.  Ion desorption by core-hole Auger decay , 1978 .

[24]  W. Shockley Some Predicted Effects of Temperature Gradients on Diffusion in Crystals , 1953 .

[25]  S. B. Fisher,et al.  On the temperature rise in electron irradiated foils , 1970 .