Estimates of Shear-Wave Q and κ0 for Unconsolidated and Semiconsolidated Sediments in Eastern North America

Measured and calculated values of the effective quality factor Qef and the site attenuation parameter κ0 for unconsolidated and semiconsolidated sediments in eastern North America (ENA) indicate that the latter is strongly dependent on sediment thickness. Estimates of κ0 for National Earthquake Hazard Reduction Program (NEHRP) BC site profiles (sediment plus hard rock) in the Mississippi Embayment and the Atlantic Coastal Plain were found to increase from about 9 to 31 msec for sedi- ment thicknesses ranging from 116 to 600 m. Stochastic simulations using the 175 m thick hypothetical NEHRP BC site profile used to estimate ENA ground motions in the nationalseismichazardmapsbytheU.S.GeologicalSurvey(USGS)indicatethat κ0 20 msec provides a smaller estimate of amplification that agrees more closely with the low-strain short-period site coefficients in the NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures (NEHRPProvisions) than the10msecvalueusedbytheUSGS.Alinearregressionofthe κ0 estimatescompiledin this study indicates that κ0 20 msec corresponds to a relatively thick BC sediment thickness of 460 116 m. These same stochastic simulations indicate that the rela- tivelyshallowUSGSsiteprofileprovidesestimatesofamplificationthataresmallerthan thelow-strainlong-periodsitecoefficientsintheNEHRPProvisions.Thedependenceof bothsiteattenuationandsiteamplificationonsedimentthicknesssuggeststhattheuseof a single reference site condition for hazard mapping might not be appropriate. Instead, theseresultsimplythateitheraregionalsetofreferencesiteprofilesshouldbedeveloped or that a more uniform site condition such as hard rock should be used to define a more stable reference site condition in ENA.

[1]  C. G. Olgun,et al.  Site-Response Models for Charleston, South Carolina, and Vicinity Developed from Shallow Geotechnical Investigations , 2006 .

[2]  D. Perkins,et al.  National Seismic-Hazard Maps: Documentation June 1996 , 1996 .

[3]  G. Atkinson,et al.  Ground-motion relations for eastern North America , 1995, Bulletin of the Seismological Society of America.

[4]  K. Aki,et al.  Origin of coda waves: Source, attenuation, and scattering effects , 1975 .

[5]  Igor B. Morozov,et al.  Geometrical attenuation, frequency dependence of Q, and the absorption band problem , 2008 .

[6]  J. B. Harris,et al.  Seismic investigation of near-surface geological structure in the Paducah, Kentucky, area: application to earthquake hazard evaluation , 1997 .

[7]  Sebastiano Foti,et al.  Simultaneous measurement and inversion of surface wave dispersion and attenuation curves , 2002 .

[8]  M. Fehler,et al.  A temporal change in coda wave attenuation observed during an eruption of Mount St. Helens , 1988 .

[9]  T. G. Barker,et al.  Shallow shear wave velocity and Q structures at the El Centro strong motion accelerograph array , 1983 .

[10]  R. Wu,et al.  Scattering and attenuation of seismic waves , 1988 .

[11]  Gail M. Atkinson,et al.  Some Comparisons Between Recent Ground- Motion Relations , 1997 .

[12]  K. Aki Scattering and attenuation of shear waves in the lithosphere , 1980 .

[13]  Shahram Pezeshk,et al.  Empirical-Stochastic Ground-Motion Prediction for Eastern North America , 2005 .

[14]  J. Humphrey,et al.  A Least Squares Method For Objective Determination of Earthquake Source Parameters , 1991 .

[15]  Keith L. McLaughlin,et al.  A geology-based 3D velocity model of the Los Angeles basin sediments , 1996, Bulletin of the Seismological Society of America.

[16]  Gail M. Atkinson,et al.  Earthquake Ground-Motion Prediction Equations for Eastern North America , 2006 .

[17]  D. Jongmans,et al.  Microearthquake S-wave observations from 0 to 1 km in the Varian well at Parkfield, California , 1995, Bulletin of the Seismological Society of America.

[18]  Kou‐Cheng Chen,et al.  Qp-Qs relations in the sedimentary basin of the upper Mississippi Embayment using converted phases , 1994, Bulletin of the Seismological Society of America.

[19]  Walter J. Silva,et al.  DEVELOPMENT OF REGIONAL HARD ROCK ATTENUATION RELATIONS FOR CENTRAL AND EASTERN NORTH AMERICA, MID-CONTINENT AND GULF COAST AREAS , 2002 .

[20]  E. Hauksson,et al.  Results from a 1500 m deep, three-level downhole seismometer array: Site response, low Q values, and fmax , 1987 .

[21]  Kazuyoshi Kudo,et al.  10. Attenuation of Shear Waves in Soil , 1970 .

[22]  J. Brune Tectonic stress and the spectra of seismic shear waves from earthquakes , 1970 .

[23]  Roger D. Borcherdt,et al.  Estimates of Site-Dependent Response Spectra for Design (Methodology and Justification) , 1994 .

[24]  W. B. Joyner,et al.  The attenuation of seismic shear waves in quaternary alluvium in Santa Clara Valley, California , 1994, Bulletin of the Seismological Society of America.

[25]  Robin K. McGuire,et al.  The character of high-frequency strong ground motion , 1981 .

[26]  David M. Boore,et al.  Simulation of Ground Motion Using the Stochastic Method , 2003 .

[27]  William T. Holmes,et al.  The 1997 NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures , 2000 .

[28]  L. J. Burdick,et al.  Comments on “the corner frequency shift, earthquake source models, and Q,” by T. C. Hanks , 1982 .

[29]  T. Lay,et al.  Modern Global Seismology , 1995 .

[30]  W. B. Joyner,et al.  The effect of Quaternary alluvium on strong ground motion in the Coyote Lake, California, earthquake of 1979 , 1981 .

[31]  Benedikt Halldorsson,et al.  Calibration of the Specific Barrier Model to Earthquakes of Different Tectonic Regions , 2005 .

[32]  A. Frankel,et al.  On the similarity of theories of anelastic and scattering attenuation , 1989 .

[33]  P. Talwani,et al.  Ground-Motion Attenuation in the Atlantic Coastal Plain near Charleston, South Carolina , 2003 .

[34]  Arthur Frankel,et al.  Site response for urban Los Angeles using aftershocks of the Northridge earthquake , 1996, Bulletin of the Seismological Society of America.

[35]  L. M. Baker,et al.  Attenuation near Anza, California , 1988 .

[36]  David Carver,et al.  First-generation site-response maps for the Los Angeles region based on earthquake ground motions , 1998, Bulletin of the Seismological Society of America.

[37]  Y. K. Wen,et al.  Uniform Hazard Ground Motions for Mid-America Cities , 2001 .

[38]  N. Barton Rock Quality, Seismic Velocity, Attenuation and Anisotropy , 2006 .

[39]  G. Toro MODIFICATION OF THE TORO ET AL. (1997) ATTENUATION EQUATIONS FOR LARGE MAGNITUDES AND SHORT DISTANCES , 2002 .

[40]  T. Fumal,et al.  Near-surface velocities and attenuation at two boreholes near Anza, California, from logging data , 1990, Bulletin of the Seismological Society of America.

[41]  Susan E. Hough,et al.  High-frequency spectra observed at Anza, California: Implications for Q structure , 1988 .

[42]  Gail M. Atkinson,et al.  Earthquake Ground-Motion Prediction Equations for Eastern , 2007 .

[43]  S. Harmsen,et al.  Documentation for the 2002 update of the national seismic hazard maps , 2002 .

[44]  Wei Li,et al.  Site Amplification and Attenuation via Downhole Array Seismogram Inversion: A Comparative Study of the 2003 Miyagi-Oki Aftershock Sequence , 2008 .

[45]  Carlo G. Lai,et al.  IN SITU MEASUREMENT OF DAMPING RATIO USING SURFACE WAVES , 2000 .

[46]  G. McMechan,et al.  Separation of intrinsic and scattering Q based on frequency-dependent amplitude ratios of transmitted waves , 1994 .

[47]  David M. Boore,et al.  Estimation of ground motion at deep-soil sites in eastern North America , 1991, Bulletin of the Seismological Society of America.

[48]  D. L. Bernreuter,et al.  Seismic hazard characterization of 69 nuclear plant sites east of the Rocky Mountains: Results and discussion for the Batch 4 sites , 2017 .

[49]  Nick Gregor,et al.  FOR CENTRAL AND EASTERN NORTH AMERICA , 2002 .

[50]  C. Langston Local Earthquake Wave Propagation through Mississippi Embayment Sediments, Part I: Body-Wave Phases and Local Site Responses , 2003 .

[51]  G. R. Toro,et al.  Model of Strong Ground Motions from Earthquakes in Central and Eastern North America: Best Estimates and Uncertainties , 1997 .

[52]  C. Langston Local Earthquake Wave Propagation through Mississippi Embayment Sediments, Part II: Influence of Local Site Velocity Structure on Qp-Qs Determinations , 2003 .

[53]  N. A. Haskell,et al.  Crustal Reflection of Plane SH Waves , 1960 .

[54]  David M. Boore,et al.  SSMSIM : Fortran programs for simulating ground motions from earthquakes , 1996 .

[55]  S. Pezeshk,et al.  Determination of Shallow Shear-Wave Attenuation in the Mississippi Embayment Using Vertical Seismic Profiling Data , 2009 .

[56]  Jim Mori,et al.  Evaluation of Methods for Estimating Linear Site-Response Amplifications in the Los Angeles Region , 2000 .

[57]  Steven M. Day,et al.  Control of strong motion by the upper 30 meters , 1996, Bulletin of the Seismological Society of America.

[58]  P. Bodin,et al.  Bulk Sediment Qp and Qs in the Mississippi Embayment, Central United States , 2005 .

[59]  Vernon F. Cormier,et al.  THE EFFECT OF ATTENUATION ON SEISMIC BODY WAVES , 1982 .

[60]  Gail M. Atkinson,et al.  Erratum to “The high-frequency shape of the source spectrum for earthquakes in Eastern and Western Canada” , 1996, Bulletin of the Seismological Society of America.

[61]  H. Kanamori Spectrum of short‐period core phases in relation to the attenuation in the mantle , 1967 .

[62]  W. Mooney,et al.  The relocation of microearthquakes in the northern Mississippi Embayment , 1985 .

[63]  N. Null Minimum Design Loads for Buildings and Other Structures , 2003 .

[64]  John G. Anderson,et al.  A MODEL FOR THE SHAPE OF THE FOURIER AMPLITUDE SPECTRUM OF ACCELERATION AT HIGH FREQUENCIES , 1984 .

[65]  C. Cramer,et al.  The Memphis, Shelby County, Tennessee, seismic hazard maps , 2004 .

[66]  Robert V. Whitman,et al.  Design procedures for dynamically loaded foundations , 1967 .

[67]  Kou‐Cheng Chen,et al.  Shear-wave velocity of the sedimentary basin in the upper Mississippi embayment using S-to-P converted waves , 1996, Bulletin of the Seismological Society of America.

[68]  R. Abercrombie A Summary of Attenuation Measurements from Borehole Recordings of Earthquakes: The 10 Hz Transition Problem , 1998 .

[69]  James F. Gibbs,et al.  Seismic Velocities and Attenuation from Borehole Measurements near the Parkfield Prediction Zone, Central California , 1989 .

[70]  A. Dainty A scattering model to explain seismic Q observations in the lithosphere between 1 and 30 Hz , 1981 .

[71]  S. Pezeshk,et al.  Unexpected Values of Qs in the Unconsolidated Sediments of the Mississippi Embayment , 2002 .

[72]  Jamison H. Steidl,et al.  Borehole Response Studies at the Garner Valley Downhole Array, Southern California , 2002 .

[73]  Raymond B. Seed,et al.  New Site Coefficients and Site Classification System Used in Recent Building Seismic Code Provisions , 2000 .

[74]  Arthur Frankel,et al.  Energy-flux model of seismic coda: Separation of scattering and intrinsic attenuation , 1987 .

[75]  John G. Anderson A PRELIMINARY DESCRIPTIVE MODEL FOR THE DISTANCE DEPENDENCE OF THE SPECTRAL DECAY PARAMETER IN , 1991 .

[76]  Vincent P. Drnevich,et al.  DYNAMIC PRESTRAINING OF DRY SAND , 1970 .

[77]  Dok,et al.  Attenuation of Seismic Energy in the Upper Mantle , 2022 .

[78]  G. Atkinson,et al.  Shear-Wave Velocity Survey of Seismographic Sites in Eastern Canada: Calibration of Empirical Regression Method of Estimating Site Response , 1997 .

[79]  M. Toksöz,et al.  Ultrasonic P and S wave attenuation in dry and saturated rocks under pressure , 1980 .

[80]  R. Herrmann,et al.  Attenuation of body waves in the central New Madrid seismic zone , 1994 .

[81]  Gail M. Atkinson,et al.  Empirical Attenuation of Ground-Motion Spectral Amplitudes in Southeastern Canada and the Northeastern United States , 2004 .

[82]  K. Campbell PREDICTION OF STRONG GROUND MOTION USING THE HYBRID EMPIRICAL METHOD AND ITS USE IN THE DEVELOPMENT OF GROUND-MOTION (ATTENUATION) RELATIONS IN EASTERN NORTH AMERICA , 2003 .

[83]  J. B. Fletcher Source Parameters and Crustal Q for Four Earthquakes in South Carolina , 1995 .

[84]  C. Langston,et al.  QP-QS relations in a sedimentary basin using converted phases , 1991 .

[85]  A. Papageorgiou,et al.  A specific barrier model for the quantitative description of inhomogeneous faulting and the prediction of strong ground motion. I. Description of the model , 1983 .

[86]  Walter I. Futterman,et al.  Dispersive body waves , 1962 .

[87]  E. Woolery,et al.  Qs estimation for unconsolidated sediments using first-arrival SH wave critical refractions , 1994 .

[88]  M. Toksöz,et al.  Thermal cracking and amplitude dependent attenuation , 1980 .

[89]  D. L. Anderson,et al.  Attenuation of seismic energy in the upper mantle , 1965 .

[90]  Daniel Moos,et al.  In Situ Studies of Velocity in Fractured Crystalline Rocks , 1983 .

[91]  S. Kinoshita Deep-Borehole-Measured QP and QS Attenuation for Two Kanto Sediment Layer Sites , 2008 .

[92]  Gail M. Atkinson,et al.  Generic finite-fault model for ground-motion prediction in eastern North America , 1999, Bulletin of the Seismological Society of America.

[93]  M. Fehler,et al.  13 - Scattering and Attenuation of Seismic Waves in the Lithosphere , 2002 .

[94]  Howard H. M. Hwang,et al.  Site coefficients for design of buildings in eastern United States , 1997 .

[95]  R. B. Darragh,et al.  Engineering characterization of strong ground motion recorded at rock sites. Final report , 1995 .

[96]  I. Morozov Thirty Years of Confusion around “Scattering Q”? , 2009 .

[97]  Charles S. Mueller,et al.  Documentation for the 2008 update of the United States National Seismic Hazard Maps , 2008 .

[98]  David M. Boore,et al.  SMSIM — Fortran Programs for Simulating Ground Motions from Earthquakes: Version 2.3 — A Revision of OFR 96–80–A , 2000 .

[99]  S. Hutson,et al.  Lithology and shear-wave velocity in Memphis, Tennessee , 2003 .

[100]  Robert W. Clayton,et al.  Finite difference simulations of seismic scattering: Implications for the propagation of short‐period seismic waves in the crust and models of crustal heterogeneity , 1986 .

[101]  T. V. McEvilly,et al.  Shear-wave anisotropy in the Parkfield Varian well VSP , 1990, Bulletin of the Seismological Society of America.

[102]  D. Boore Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra , 1983 .

[103]  Rachel E. Abercrombie,et al.  Near-surface attenuation and site effects from comparison of surface and deep borehole recordings , 1997, Bulletin of the Seismological Society of America.

[104]  M. Wyllie,et al.  Effects of Pressure and Fluid Saturation on the Attenuation of Elastic Waves in Sands , 1964 .

[105]  David M. Boore,et al.  Site amplifications for generic rock sites , 1997, Bulletin of the Seismological Society of America.

[106]  S. Kramer Geotechnical Earthquake Engineering , 1996 .

[107]  David M. Boore,et al.  Estimated Ground Motion From the 1994 Northridge, California, Earthquake at the Site of the Interstate 10 and La Cienega Boulevard Bridge Collapse, West Los Angeles, California , 2003 .

[108]  Jongwon Lee Engineering Characterization of Earthquake Ground Motions. , 2009 .

[109]  J. Pulli Attenuation of coda waves in New England , 1984 .

[110]  J. C. Chen,et al.  A Methodology to Correct for Effect of the Local Site Characteristics in Seismic Hazard Analyses , 1987 .

[111]  Duhee Park,et al.  Evaluation of seismic site factors in the Mississippi Embayment. I. Estimation of dynamic properties , 2005 .

[112]  M. N. Toksoz,et al.  Attenuation of seismic waves in dry and saturated rocks: II. Mechanisms , 1979 .

[113]  Peter M. Shearer,et al.  High-frequency borehole seismograms recorded in the San Jcinto Fault zone, Southern California Part 2. Attenuation and site effects , 1991, Bulletin of the Seismological Society of America.

[114]  T. J. Owens,et al.  Near-surface scattering effects observed with a high-frequency phased array at Pinyon Flats, California , 1998, Bulletin of the Seismological Society of America.