Structural determinants for regulation of phosphodiesterase by a G protein at 2.0 Å

[1]  W. Weis,et al.  Structural basis of the Axin–adenomatous polyposis coli interaction , 2000, The EMBO journal.

[2]  N. Artemyev,et al.  Loss of the Effector Function in a Transducin-α Mutant Associated with Nougaret Night Blindness* , 2000, The Journal of Biological Chemistry.

[3]  O. Lichtarge,et al.  A regulator of G protein signaling interaction surface linked to effector specificity. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Wei He,et al.  Slowed recovery of rod photoresponse in mice lacking the GTPase accelerating protein RGS9-1 , 2000, Nature.

[5]  N. Tjandra,et al.  Solution structure of human GAIP (Galpha interacting protein): a regulator of G protein signaling. , 1999, Journal of molecular biology.

[6]  N. Artemyev,et al.  Modulation of transducin GTPase activity by chimeric RGS16 and RGS9 regulators of G protein signaling and the effector molecule. , 1999, Biochemistry.

[7]  H. Hamm,et al.  The α-Helical Domain of Gαt Determines Specific Interaction with Regulator of G Protein Signaling 9* , 1999, The Journal of Biological Chemistry.

[8]  D. Baylor,et al.  Role for the target enzyme in deactivation of photoreceptor G protein in vivo. , 1998, Science.

[9]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[10]  N. Artemyev,et al.  Identification of Effector Residues on Photoreceptor G Protein, Transducin* , 1998, The Journal of Biological Chemistry.

[11]  N. Artemyev,et al.  Substitution of Transducin Ser202 by Asp Abolishes G-protein/RGS Interaction* , 1998, The Journal of Biological Chemistry.

[12]  S R Sprang,et al.  Crystal structure of the catalytic domains of adenylyl cyclase in a complex with Gsalpha.GTPgammaS. , 1997 .

[13]  J. Hurley,et al.  Three Discrete Regions of Mammalian Adenylyl Cyclase Form a Site for Gsα Activation* , 1997, The Journal of Biological Chemistry.

[14]  H. Hamm,et al.  Activation of transducin guanosine triphosphatase by two proteins of the RGS family. , 1997, Biochemistry.

[15]  S. Sprang,et al.  Structure of RGS4 Bound to AlF4 −-Activated Giα1: Stabilization of the Transition State for GTP Hydrolysis , 1997, Cell.

[16]  V. Arshavsky,et al.  Interaction Sites of the COOH-terminal Region of the γ Subunit of cGMP Phosphodiesterase with the GTP-bound α Subunit of Transducin* , 1996, The Journal of Biological Chemistry.

[17]  H. Hamm,et al.  The 2.0 Å crystal structure of a heterotrimeric G protein , 1996, Nature.

[18]  H. Hamm,et al.  Mapping of Effector Binding Sites of Transducin α-Subunit Using Gαt/Gαil Chimeras (*) , 1996, The Journal of Biological Chemistry.

[19]  H. Hamm,et al.  An Effector Site That Stimulates G-protein GTPase in Photoreceptors (*) , 1995, The Journal of Biological Chemistry.

[20]  H. Hamm,et al.  GTPase mechanism of Gproteins from the 1.7-Å crystal structure of transducin α - GDP AIF−4 , 1994, Nature.

[21]  P B Sigler,et al.  The 2.2 A crystal structure of transducin-alpha complexed with GTP gamma S. , 1994, Nature.

[22]  Heidi E. Hamm,et al.  Structural determinants for activation of the α-subunit of a heterotrimeric G protein , 1994, Nature.

[23]  Heidi E. Hamm,et al.  The 2.2 Å crystal structure of transducin-α complexed with GTPγS , 1993, Nature.

[24]  P. Chardin,et al.  Tryptophan W207 in transducin T alpha is the fluorescence sensor of the G protein activation switch and is involved in the effector binding. , 1993, The EMBO journal.

[25]  T. Wensel,et al.  A GTPase-accelerating factor for transducin, distinct from its effector cGMP phosphodiesterase, in rod outer segment membranes , 1993, Neuron.

[26]  H. Hamm,et al.  Sites of interaction between rod G-protein alpha-subunit and cGMP-phosphodiesterase gamma-subunit. Implications for the phosphodiesterase activation mechanism. , 1992, The Journal of biological chemistry.

[27]  Brown Rl Functional regions of the inhibitory subunit of retinal rod cGMP phosphodiesterase identified by site-specific mutagenesis and fluorescence spectroscopy. , 1992 .

[28]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[29]  N. Artemyev,et al.  Active sites of the cyclic GMP phosphodiesterase γ‐subunit of retinal rod outer segments , 1988 .

[30]  C. Cowan,et al.  RGS9, a GTPase Accelerator for Phototransduction , 1998, Neuron.

[31]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.