Entropy jumps for isotropic log-concave random vectors and spectral gap

We prove a quantitative dimension-free bound in the Shannon{Stam en- tropy inequality for the convolution of two log-concave distributions in dimension d in terms of the spectral gap of the density. The method relies on the analysis of the Fisher information production, which is the second derivative of the entropy along the (normalized) heat semigroup. We also discuss consequences of our result in the study of the isotropic constant of log-concave distributions (slicing problem).

[1]  E. Carlen Superadditivity of Fisher's information and logarithmic Sobolev inequalities , 1991 .

[2]  Matthieu Fradelizi,et al.  Sections of convex bodies through their centroid , 1997 .

[3]  Nelson M. Blachman,et al.  The convolution inequality for entropy powers , 1965, IEEE Trans. Inf. Theory.

[4]  M. Ledoux,et al.  Logarithmic Sobolev Inequalities , 2014 .

[5]  A. Barron ENTROPY AND THE CENTRAL LIMIT THEOREM , 1986 .

[6]  E. Carlen,et al.  Entropy production by block variable summation and central limit theorems , 1991 .

[7]  Assaf Naor,et al.  Entropy jumps in the presence of a spectral gap , 2003 .

[8]  Miklós Simonovits,et al.  Isoperimetric problems for convex bodies and a localization lemma , 1995, Discret. Comput. Geom..

[9]  B. Klartag,et al.  Approximately gaussian marginals and the hyperplane conjecture , 2010, 1001.0875.

[10]  A. Barron,et al.  Fisher information inequalities and the central limit theorem , 2001, math/0111020.

[11]  B. Klartag On convex perturbations with a bounded isotropic constant , 2006 .

[12]  M. Meyer,et al.  Increasing functions and inverse Santaló inequality for unconditional functions , 2008 .

[13]  K. Ball Logarithmically concave functions and sections of convex sets in $R^{n}$ , 1988 .

[14]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[15]  V. Milman,et al.  Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space , 1989 .

[16]  Sergey G. Bobkov,et al.  Dimensional behaviour of entropy and information , 2011, ArXiv.

[17]  Sergey G. Bobkov,et al.  The Entropy Per Coordinate of a Random Vector is Highly Constrained Under Convexity Conditions , 2010, IEEE Transactions on Information Theory.

[18]  S. Bobkov Isoperimetric and Analytic Inequalities for Log-Concave Probability Measures , 1999 .

[19]  A. J. Stam Some Inequalities Satisfied by the Quantities of Information of Fisher and Shannon , 1959, Inf. Control..

[20]  A. Prékopa On logarithmic concave measures and functions , 1973 .

[21]  Amiel Feinstein,et al.  Information and information stability of random variables and processes , 1964 .