Exploiting special structure in semidefinite programming: A survey of theory and applications

Semidefinite programming (SDP) may be seen as a generalization of linear programming (LP). In particular, one may extend interior point algorithms for LP to SDP, but it has proven much more difficult to exploit structure in the SDP data during computation. We survey three types of special structures in SDP data: 1. A common 'chordal' sparsity pattern of all the data matrices. This structure arises in applications in graph theory, and may also be used to deal with more general sparsity patterns in a heuristic way. 2. Low rank of all the data matrices. This structure is common in SDP relaxations of combinatorial optimization problems, and SDP approximations of polynomial optimization problems. 3. The situation where the data matrices are invariant under the action of a permutation group, or, more generally, where the data matrices belong to a low dimensional matrix algebra. Such problems arise in truss topology optimization, particle physics, coding theory, computational geometry, and graph theory. We will give an overview of existing techniques to exploit these structures in the data. Most of the paper will be devoted to the third situation, since it has received the least attention in the literature so far.

[1]  Vwani P. Roychowdhury,et al.  Covariance selection for nonchordal graphs via chordal embedding , 2008, Optim. Methods Softw..

[2]  P. Delsarte Bounds for unrestricted codes, by linear programming , 1972 .

[3]  Farid Alizadeh,et al.  Combinatorial Optimization with Semi-Definite Matrices , 1992, IPCO.

[4]  H. W. Turnbull,et al.  Lectures on Matrices , 1934 .

[5]  Jean-Pierre Serre,et al.  Linear representations of finite groups , 1977, Graduate texts in mathematics.

[6]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[7]  P. Parrilo,et al.  From coefficients to samples: a new approach to SOS optimization , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[8]  M. Yannakakis Computing the Minimum Fill-in is NP^Complete , 1981 .

[9]  Dion Gijswijt,et al.  Matrix Algebras and Semidefinite Programming Techniques for Codes , 2005, 1007.0906.

[10]  Xiong Zhang,et al.  Solving Large-Scale Sparse Semidefinite Programs for Combinatorial Optimization , 1999, SIAM J. Optim..

[11]  D. G. Higman Coherent configurations , 1975 .

[12]  Chris D. Godsil,et al.  ALGEBRAIC COMBINATORICS , 2013 .

[13]  J. Wedderburn,et al.  On Hypercomplex Numbers , 1908 .

[14]  D. Kamenetsky Symmetry Groups , 2003 .

[15]  Mark Giesbrecht,et al.  Efficient decomposition of separable algebras , 2004, J. Symb. Comput..

[16]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[17]  Etienne de Klerk,et al.  On the Lovász theta-number of almost regular graphs with application to Erdos-Rényi graphs , 2009, Eur. J. Comb..

[18]  Monique Laurent,et al.  Strengthened semidefinite programming bounds for codes , 2007, Math. Program..

[19]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[20]  Kim-Chuan Toh,et al.  SDPT3 -- A Matlab Software Package for Semidefinite Programming , 1996 .

[21]  Robert E. Tarjan,et al.  Algorithmic Aspects of Vertex Elimination on Graphs , 1976, SIAM J. Comput..

[22]  Robert M. Gray,et al.  Toeplitz and Circulant Matrices: A Review , 2005, Found. Trends Commun. Inf. Theory.

[23]  Robert M. Gray,et al.  Toeplitz And Circulant Matrices: A Review (Foundations and Trends(R) in Communications and Information Theory) , 2006 .

[24]  M. Laurent A tour d’horizon on positive semidefinite and Euclidean distance matrix completion problems , 1998 .

[25]  Renata Sotirov,et al.  On the Lovasz O-Number of Almost Regular Graphs with Application to Erdos-Renyi Graphs , 2006 .

[26]  Charles R. Johnson,et al.  Positive definite completions of partial Hermitian matrices , 1984 .

[27]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[28]  Alexander Schrijver,et al.  New code upper bounds from the Terwilliger algebra and semidefinite programming , 2005, IEEE Transactions on Information Theory.

[29]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[30]  Etienne de Klerk,et al.  Exploiting group symmetry in semidefinite programming relaxations of the quadratic assignment problem , 2007, Math. Program..

[31]  John Darzentas,et al.  Problem Complexity and Method Efficiency in Optimization , 1983 .

[32]  K. Murota,et al.  A numerical algorithm for block-diagonal decomposition of matrix *-algebras with general irreducible components , 2010 .

[33]  F. Vallentin Symmetry in semidefinite programs , 2007, 0706.4233.

[34]  Franz Rendl,et al.  Semidefinite Programming Relaxations for the Quadratic Assignment Problem , 1998, J. Comb. Optim..

[35]  N. Katoh,et al.  Group Symmetry in Interior-Point Methods for Semidefinite Program , 2001 .

[36]  Alexander Schrijver,et al.  A comparison of the Delsarte and Lovász bounds , 1979, IEEE Trans. Inf. Theory.

[37]  Donald E. Knuth The Sandwich Theorem , 1994, Electron. J. Comb..

[38]  Etienne de Klerk,et al.  On Semidefinite Programming Relaxations of the Traveling Salesman Problem , 2007, SIAM J. Optim..

[39]  Alexander Schrijver,et al.  New upper bounds for nonbinary codes based on the Terwilliger algebra and semidefinite programming , 2006, J. Comb. Theory, Ser. A.

[40]  Franz Rendl,et al.  QAPLIB – A Quadratic Assignment Problem Library , 1997, J. Glob. Optim..

[41]  A. Ivic Sums of squares , 2020, An Introduction to 𝑞-analysis.

[42]  M. Todd A study of search directions in primal-dual interior-point methods for semidefinite programming , 1999 .

[43]  Alexander Schrijver,et al.  Reduction of symmetric semidefinite programs using the regular $$\ast$$-representation , 2007, Math. Program..

[44]  O. Taussky Sums of Squares , 1970 .

[45]  C. Bachoc,et al.  New upper bounds for kissing numbers from semidefinite programming , 2006, math/0608426.

[46]  Katsuki Fujisawa,et al.  Exploiting sparsity in semidefinite programming via matrix completion II: implementation and numerical results , 2003, Math. Program..

[47]  Kurt M. Anstreicher,et al.  Recent advances in the solution of quadratic assignment problems , 2003, Math. Program..

[48]  M. Laurent Sums of Squares, Moment Matrices and Optimization Over Polynomials , 2009 .

[49]  E. D. Klerk,et al.  Exploiting group symmetry in truss topology optimization , 2007 .

[50]  R. Bellman,et al.  On Systems of Linear Inequalities in Hermitian Matrix Variables , 1962 .

[51]  P. Parrilo,et al.  Symmetry groups, semidefinite programs, and sums of squares , 2002, math/0211450.

[52]  P. Cameron Coherent configurations, association schemes and permutation groups , 2003 .

[53]  László Lovász,et al.  On the Shannon capacity of a graph , 1979, IEEE Trans. Inf. Theory.

[54]  Etienne de Klerk,et al.  Improved Bounds for the Crossing Numbers of Km, n and Kn , 2004, SIAM J. Discret. Math..

[55]  Frank Vallentin,et al.  Lecture notes: Semidefinite programs and harmonic analysis , 2008, 0809.2017.

[56]  Yoshihiro Kanno,et al.  A numerical algorithm for block-diagonal decomposition of matrix $${*}$$-algebras with application to semidefinite programming , 2010 .

[57]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[58]  Alan George,et al.  The Evolution of the Minimum Degree Ordering Algorithm , 1989, SIAM Rev..