Exploiting special structure in semidefinite programming: A survey of theory and applications
暂无分享,去创建一个
[1] Vwani P. Roychowdhury,et al. Covariance selection for nonchordal graphs via chordal embedding , 2008, Optim. Methods Softw..
[2] P. Delsarte. Bounds for unrestricted codes, by linear programming , 1972 .
[3] Farid Alizadeh,et al. Combinatorial Optimization with Semi-Definite Matrices , 1992, IPCO.
[4] H. W. Turnbull,et al. Lectures on Matrices , 1934 .
[5] Jean-Pierre Serre,et al. Linear representations of finite groups , 1977, Graduate texts in mathematics.
[6] Jos F. Sturm,et al. A Matlab toolbox for optimization over symmetric cones , 1999 .
[7] P. Parrilo,et al. From coefficients to samples: a new approach to SOS optimization , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).
[8] M. Yannakakis. Computing the Minimum Fill-in is NP^Complete , 1981 .
[9] Dion Gijswijt,et al. Matrix Algebras and Semidefinite Programming Techniques for Codes , 2005, 1007.0906.
[10] Xiong Zhang,et al. Solving Large-Scale Sparse Semidefinite Programs for Combinatorial Optimization , 1999, SIAM J. Optim..
[11] D. G. Higman. Coherent configurations , 1975 .
[12] Chris D. Godsil,et al. ALGEBRAIC COMBINATORICS , 2013 .
[13] J. Wedderburn,et al. On Hypercomplex Numbers , 1908 .
[14] D. Kamenetsky. Symmetry Groups , 2003 .
[15] Mark Giesbrecht,et al. Efficient decomposition of separable algebras , 2004, J. Symb. Comput..
[16] Jean B. Lasserre,et al. Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..
[17] Etienne de Klerk,et al. On the Lovász theta-number of almost regular graphs with application to Erdos-Rényi graphs , 2009, Eur. J. Comb..
[18] Monique Laurent,et al. Strengthened semidefinite programming bounds for codes , 2007, Math. Program..
[19] Yurii Nesterov,et al. Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.
[20] Kim-Chuan Toh,et al. SDPT3 -- A Matlab Software Package for Semidefinite Programming , 1996 .
[21] Robert E. Tarjan,et al. Algorithmic Aspects of Vertex Elimination on Graphs , 1976, SIAM J. Comput..
[22] Robert M. Gray,et al. Toeplitz and Circulant Matrices: A Review , 2005, Found. Trends Commun. Inf. Theory.
[23] Robert M. Gray,et al. Toeplitz And Circulant Matrices: A Review (Foundations and Trends(R) in Communications and Information Theory) , 2006 .
[24] M. Laurent. A tour d’horizon on positive semidefinite and Euclidean distance matrix completion problems , 1998 .
[25] Renata Sotirov,et al. On the Lovasz O-Number of Almost Regular Graphs with Application to Erdos-Renyi Graphs , 2006 .
[26] Charles R. Johnson,et al. Positive definite completions of partial Hermitian matrices , 1984 .
[27] K. Brown,et al. Graduate Texts in Mathematics , 1982 .
[28] Alexander Schrijver,et al. New code upper bounds from the Terwilliger algebra and semidefinite programming , 2005, IEEE Transactions on Information Theory.
[29] David P. Williamson,et al. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.
[30] Etienne de Klerk,et al. Exploiting group symmetry in semidefinite programming relaxations of the quadratic assignment problem , 2007, Math. Program..
[31] John Darzentas,et al. Problem Complexity and Method Efficiency in Optimization , 1983 .
[32] K. Murota,et al. A numerical algorithm for block-diagonal decomposition of matrix *-algebras with general irreducible components , 2010 .
[33] F. Vallentin. Symmetry in semidefinite programs , 2007, 0706.4233.
[34] Franz Rendl,et al. Semidefinite Programming Relaxations for the Quadratic Assignment Problem , 1998, J. Comb. Optim..
[35] N. Katoh,et al. Group Symmetry in Interior-Point Methods for Semidefinite Program , 2001 .
[36] Alexander Schrijver,et al. A comparison of the Delsarte and Lovász bounds , 1979, IEEE Trans. Inf. Theory.
[37] Donald E. Knuth. The Sandwich Theorem , 1994, Electron. J. Comb..
[38] Etienne de Klerk,et al. On Semidefinite Programming Relaxations of the Traveling Salesman Problem , 2007, SIAM J. Optim..
[39] Alexander Schrijver,et al. New upper bounds for nonbinary codes based on the Terwilliger algebra and semidefinite programming , 2006, J. Comb. Theory, Ser. A.
[40] Franz Rendl,et al. QAPLIB – A Quadratic Assignment Problem Library , 1997, J. Glob. Optim..
[41] A. Ivic. Sums of squares , 2020, An Introduction to 𝑞-analysis.
[42] M. Todd. A study of search directions in primal-dual interior-point methods for semidefinite programming , 1999 .
[43] Alexander Schrijver,et al. Reduction of symmetric semidefinite programs using the regular $$\ast$$-representation , 2007, Math. Program..
[44] O. Taussky. Sums of Squares , 1970 .
[45] C. Bachoc,et al. New upper bounds for kissing numbers from semidefinite programming , 2006, math/0608426.
[46] Katsuki Fujisawa,et al. Exploiting sparsity in semidefinite programming via matrix completion II: implementation and numerical results , 2003, Math. Program..
[47] Kurt M. Anstreicher,et al. Recent advances in the solution of quadratic assignment problems , 2003, Math. Program..
[48] M. Laurent. Sums of Squares, Moment Matrices and Optimization Over Polynomials , 2009 .
[49] E. D. Klerk,et al. Exploiting group symmetry in truss topology optimization , 2007 .
[50] R. Bellman,et al. On Systems of Linear Inequalities in Hermitian Matrix Variables , 1962 .
[51] P. Parrilo,et al. Symmetry groups, semidefinite programs, and sums of squares , 2002, math/0211450.
[52] P. Cameron. Coherent configurations, association schemes and permutation groups , 2003 .
[53] László Lovász,et al. On the Shannon capacity of a graph , 1979, IEEE Trans. Inf. Theory.
[54] Etienne de Klerk,et al. Improved Bounds for the Crossing Numbers of Km, n and Kn , 2004, SIAM J. Discret. Math..
[55] Frank Vallentin,et al. Lecture notes: Semidefinite programs and harmonic analysis , 2008, 0809.2017.
[56] Yoshihiro Kanno,et al. A numerical algorithm for block-diagonal decomposition of matrix $${*}$$-algebras with application to semidefinite programming , 2010 .
[57] Stephen P. Boyd,et al. Semidefinite Programming , 1996, SIAM Rev..
[58] Alan George,et al. The Evolution of the Minimum Degree Ordering Algorithm , 1989, SIAM Rev..