Periastron advance in spinning black hole binaries: Gravitational self-force from numerical relativity

We study the general relativistic periastron advance in spinning black hole binaries on quasi-circular orbits, with spins aligned or anti-aligned with the orbital angular momentum, using numerical-relativity simulations, the post-Newtonian approximation, and black hole perturbation theory. By imposing a symmetry by exchange of the bodies’ labels, we devise an improved version of the perturbative result, and use it as the leading term of a new type of expansion in powers of the symmetric mass ratio. This allows us to measure, for the first time, the gravitational self-force effect on the periastron advance of a non-spinning particle orbiting a Kerr black hole of mass M and spin S = 0:5M 2 , down to separations of order 9M. Comparing the predictions of our improved perturbative expansion with the exact results from numerical simulations of equal-mass and equal-spin binaries, we find a remarkable agreement over a wide range of spins and orbital separations.

[1]  N. W. Taylor,et al.  Periastron advance in spinning black hole binaries: comparing effective-one-body and Numerical Relativity , 2013, 1309.0544.

[2]  M. Duez,et al.  First direct comparison of nondisrupting neutron star-black hole and binary black hole merger simulations , 2013, 1307.7685.

[3]  N. W. Taylor,et al.  Final spin and radiated energy in numerical simulations of binary black holes with equal masses and equal, aligned or antialigned spins , 2013, 1305.5991.

[4]  S. Marsat,et al.  Next-to-next-to-leading order spin–orbit effects in the gravitational wave flux and orbital phasing of compact binaries , 2013, 1303.7412.

[5]  N. W. Taylor,et al.  Suitability of hybrid gravitational waveforms for unequal-mass binaries , 2012, 1210.3007.

[6]  M. Abramowicz,et al.  Foundations of Black Hole Accretion Disk Theory , 2011, Living reviews in relativity.

[7]  T. Damour,et al.  Gravitational self-force and the effective-one-body formalism between the innermost stable circular orbit and the light ring , 2012, 1209.0964.

[8]  M. Tessmer,et al.  Aligned spins: orbital elements, decaying orbits, and last stable circular orbit to high post-Newtonian orders , 2012, 1207.6961.

[9]  Abhay Shah,et al.  Extreme-mass-ratio inspiral corrections to the angular velocity and redshift factor of a mass in circular orbit about a Kerr black hole , 2012, 1207.5595.

[10]  Harald P. Pfeiffer,et al.  Simulations of unequal-mass black hole binaries with spectral methods , 2012, 1206.3015.

[11]  Harald P. Pfeiffer,et al.  Numerical simulations of compact object binaries , 2012, 1203.5166.

[12]  A. Buonanno,et al.  Gravitational self-force correction to the binding energy of compact binary systems. , 2011, Physical review letters.

[13]  A. Buonanno,et al.  The complete non-spinning effective-one-body metric at linear order in the mass ratio , 2011, 1111.5610.

[14]  G. Lovelace,et al.  High-accuracy gravitational waveforms for binary black hole mergers with nearly extremal spins , 2011, 1110.2229.

[15]  W. Marsden I and J , 2012 .

[16]  W. G. Anderson,et al.  Sources of Gravitational Radiation , 2011 .

[17]  A. Taracchini,et al.  Periastron advance in black-hole binaries. , 2011, Physical review letters.

[18]  Erik Schnetter,et al.  Collisions of unequal mass black holes and the point particle limit , 2011, 1105.5391.

[19]  N. Sago,et al.  Beyond the geodesic approximation: conservative effects of the gravitational self-force in eccentric orbits around a Schwarzschild black hole , 2011, 1101.3331.

[20]  Marc Favata Conservative corrections to the innermost stable circular orbit (ISCO) of a Kerr black hole: a new gauge-invariant post-Newtonian ISCO condition, and the ISCO shift due to test-particle spin and the gravitational self-force , 2010, 1010.2553.

[21]  Ching-Hsing Yu,et al.  SciNet: Lessons Learned from Building a Power-efficient Top-20 System and Data Centre , 2010 .

[22]  T. Damour,et al.  Precession effect of the gravitational self-force in a Schwarzschild spacetime and the effective one-body formalism , 2010, 1008.0935.

[23]  Harald P. Pfeiffer,et al.  Measuring orbital eccentricity and periastron advance in quasicircular black hole simulations , 2010, 1004.4697.

[24]  M. Tessmer,et al.  Motion and gravitational wave forms of eccentric compact binaries with orbital-angular-momentum-aligned spins under next-to-leading order in spin–orbit and leading order in spin(1)–spin(2) and spin-squared couplings , 2010, 1003.2735.

[25]  B. Whiting,et al.  High-Order Post-Newtonian Fit of the Gravitational Self-Force for Circular Orbits in the Schwarzschild Geometry , 2010, 1002.0726.

[26]  A. Buonanno,et al.  An improved effective-one-body Hamiltonian for spinning black-hole binaries , 2009, 0912.3517.

[27]  T. Damour Gravitational self-force in a Schwarzschild background and the effective one-body formalism , 2009, 0910.5533.

[28]  M. Tessmer Gravitational waveforms from unequal-mass binaries with arbitrary spins under leading order spin-orbit coupling , 2009, 0910.5931.

[29]  G. Schāfer,et al.  Higher-order-in-spin interaction Hamiltonians for binary black holes from Poincaré invariance , 2008, 0809.2208.

[30]  T. Damour,et al.  Effective one body approach to the dynamics of two spinning black holes with next-to-leading order spin-orbit coupling , 2008, 0803.0915.

[31]  M. Kesden,et al.  Spin expansion for binary black hole mergers: New predictions and future directions , 2007, 0712.2819.

[32]  G. Schāfer,et al.  Higher-order-in-spin interaction Hamiltonians for binary black holes from source terms of Kerr geometry in approximate ADM coordinates , 2007, 0712.1515.

[33]  T. Damour,et al.  Hamiltonian of two spinning compact bodies with next-to-leading order gravitational spin-orbit coupling , 2007, 0711.1048.

[34]  S. Nissanke,et al.  Binary-black-hole merger: symmetry and the spin expansion. , 2007, Physical review letters.

[35]  D. Lorimer Binary and Millisecond Pulsars , 1998, Living reviews in relativity.

[36]  A. Buonanno,et al.  Erratum: Higher-order spin effects in the dynamics of compact binaries. II. Radiation field [Phys. Rev. D 74, 104034 (2006)] , 2007 .

[37]  A. Buonanno,et al.  Higher-order spin effects in the dynamics of compact binaries. II. Radiation field , 2006, gr-qc/0605140.

[38]  Dae-Il Choi,et al.  Gravitational-wave extraction from an inspiraling configuration of merging black holes. , 2005, Physical review letters.

[39]  Y. Zlochower,et al.  Accurate evolutions of orbiting black-hole binaries without excision. , 2005, Physical review letters.

[40]  Frans Pretorius,et al.  Evolution of binary black-hole spacetimes. , 2005, Physical review letters.

[41]  A. Gopakumar,et al.  Post-Newtonian accurate parametric solution to the dynamics of spinning compact binaries in eccentric orbits: The leading order spin-orbit interaction , 2005, gr-qc/0501011.

[42]  Daniel Enard,et al.  Status of VIRGO , 2004, SPIE Astronomical Telescopes + Instrumentation.

[43]  D. Holz,et al.  How Black Holes Get Their Kicks: Gravitational Radiation Recoil Revisited , 2004, astro-ph/0402056.

[44]  I. Stairs Testing General Relativity with Pulsar Timing , 2003, Living reviews in relativity.

[45]  H. Tagoshi,et al.  Analytic Black Hole Perturbation Approach to Gravitational Radiation , 2003, Living reviews in relativity.

[46]  Y. Mino Perturbative approach to an orbital evolution around a supermassive black hole , 2003, gr-qc/0302075.

[47]  W. Schmidt Celestial mechanics in Kerr spacetime , 2002, gr-qc/0202090.

[48]  Thibault Damour,et al.  Coalescence of two spinning black holes: an effective one-body approach , 2001, gr-qc/0103018.

[49]  T. Damour,et al.  Determination of the last stable orbit for circular general relativistic binaries at the third post-Newtonian approximation , 2000, gr-qc/0005034.

[50]  T. Damour,et al.  Dynamical invariants for general relativistic two-body systems at the third post-Newtonian approximation , 1999, gr-qc/9912092.

[51]  T. Damour,et al.  Effective one-body approach to general relativistic two-body dynamics , 1998, gr-qc/9811091.

[52]  D. Kennefick,et al.  Gravitational radiation reaction for bound motion around a Schwarzschild black hole. , 1994, Physical review. D, Particles and fields.

[53]  Blanchet,et al.  Tail-transported temporal correlations in the dynamics of a gravitating system. , 1988, Physical review. D, Particles and fields.

[54]  T. Damour,et al.  Higher-order relativistic periastron advances and binary pulsars , 1988 .

[55]  M. Fitchett,et al.  Linear momentum and gravitational waves: circular orbits around a Schwarzschild black hole , 1984 .

[56]  Larry Smarr,et al.  Sources of gravitational radiation , 1979 .

[57]  William H. Press,et al.  Rotating Black Holes: Locally Nonrotating Frames, Energy Extraction, and Scalar Synchrotron Radiation , 1972 .

[58]  H. P. Robertson Note on the Preceding Paper: The Two Body Problem in General Relativity , 1938 .