The Cotton–Mouton effect of liquid water. Part II: The semi-continuum model
暂无分享,去创建一个
Antonio Rizzo | Trygve Helgaker | Kurt V. Mikkelsen | Kenneth Ruud | Sonia Coriani | Hans Ågren | Henrik Koch | Kristian O. Sylvester-Hvid | Pål Dahle | H. Ågren | K. Mikkelsen | H. Koch | K. Ruud | T. Helgaker | A. Rizzo | S. Coriani | P. Dahle | K. Sylvester-Hvid
[1] Antonio Rizzo,et al. The Cotton-Mouton effect of liquid water. Part I: The dielectric continuum model , 1997 .
[2] H. Ågren,et al. The hypermagnetizability of molecular oxygen , 1997 .
[3] K. Ruud,et al. COTTON-MOUTON EFFECT AND SHIELDING POLARIZABILITIES OF ETHYLENE: AN MCSCF STUDY , 1997 .
[4] K. Mikkelsen,et al. A multipole reaction-field model for gauge-origin independent magnetic properties of solvated molecules , 1997 .
[5] K. Ruud,et al. The magnetizability, rotational g tensor, and quadrupole moment of PF3 revisited , 1997 .
[6] Antonio Rizzo,et al. The Cotton-Mouton effect in gases: Experiment and theory , 1997 .
[7] K. Ruud,et al. MCSCF calculations of hypermagnetizabilities and nuclear shielding polarizabilities of CO and CH4 , 1996 .
[8] Kurt V. Mikkelsen,et al. Molecular Response Method for Solvated Molecules in Nonequilibrium Solvation , 1996 .
[9] Trygve Helgaker,et al. Magnetizability and nuclear shielding constants of solvated water , 1996 .
[10] Trygve Helgaker,et al. Efficient parallel implementation of response theory: Calculations of the second hyperpolarizability of polyacenes , 1996 .
[11] H. Ågren,et al. Magnetic hyperpolarizabilities in a cubic response formulation , 1996 .
[12] D R Yarkony,et al. Modern electronic structure theory , 1995 .
[13] Yi Luo,et al. Sign change of hyperpolarizabilities of solvated water , 1995 .
[14] Antonio Rizzo,et al. Electric field dependence of magnetic properties: Multiconfigurational self‐consistent field calculations of hypermagnetizabilities and nuclear shielding polarizabilities of N2, C2H2, HCN, and H2O , 1995 .
[15] P. Jørgensen,et al. MAGNETIZABILITY OF HYDROCARBONS , 1994 .
[16] H. Ågren,et al. Solvent induced polarizabilities and hyperpolarizabilities of para‐nitroaniline studied by reaction field linear response theory , 1994 .
[17] Kurt V. Mikkelsen,et al. A multiconfiguration self‐consistent reaction field response method , 1994 .
[18] David E. Woon,et al. Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties , 1994 .
[19] Trygve Helgaker,et al. Hartree-Fock limit magnetizabilities from London orbitals , 1993 .
[20] K. Ruud,et al. Gauge-origin independent multiconfigurational self-consistent-field theory for vibrational circular dichroism , 1993 .
[21] J. Torbet,et al. Measurements of the Cotton-Mouton effect of water and of several aqueous solutions , 1992 .
[22] David Feller,et al. Application of systematic sequences of wave functions to the water dimer , 1992 .
[23] T. Helgaker,et al. An electronic Hamiltonian for origin independent calculations of magnetic properties , 1991 .
[24] Peter Pulay,et al. Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations , 1990 .
[25] T. H. Dunning. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .
[26] Trygve Helgaker,et al. A multiconfigurational self‐consistent reaction‐field method , 1988 .
[27] K. Mikkelsen,et al. Electron-transfer reactions in solution. An ab initio approach , 1987 .
[28] H. A. Levy,et al. Liquid Water: Molecular Correlation Functions from X‐Ray Diffraction , 1971 .
[29] J. Pople,et al. A Theory of Magnetic Double Refraction , 1956 .
[30] F. London,et al. Théorie quantique des courants interatomiques dans les combinaisons aromatiques , 1937 .