Thermotransport in binary system: case study on Ni50Al50 melt

The formalism of thermotransport in a binary system is analysed. Focus is put on a detailed consideration of the heat of transport parameter characterizing diffusion driven by a temperature gradient. We introduce the reduced heat of transport parameter , which characterizes part of the interdiffusion flux that is proportional to the temperature gradient. In an isothermal system represents the reduced heat flow (pure heat conduction) consequent upon unit interdiffusion flux. It is demonstrated that is independent of reference frame and is useful in a practical way for direct comparison of simulation and experimental data from different sources obtained in different reference frames. In the case study of the liquid Ni50Al50 alloy, we use equilibrium molecular dynamics simulations in conjunction with the Green–Kubo formalism to evaluate the heat transport properties of the model within the temperature range of 1500–4000 K. Our results predict that in the presence of a temperature gradient Ni tends to diffuse from the cold end to the hot end whilst Al tends to diffuse from the hot end to the cold end.

[1]  Melville S. Green,et al.  Markoff Random Processes and the Statistical Mechanics of Time‐Dependent Phenomena. II. Irreversible Processes in Fluids , 1954 .

[2]  D. Farkas,et al.  The Soret effect in diffusion in crystals , 2008 .

[3]  A. B. Lidiard,et al.  The heat of transport of vacancies in model fcc solids , 1999 .

[4]  E. Helfand,et al.  On Inversion of the Linear Laws of Irreversible Thermodynamics , 1960 .

[5]  T. Unruh,et al.  Ni self-diffusion in refractory Al-Ni melts , 2010 .

[6]  J. Howell,et al.  Diffusion in Solids , 1984, Materials Science Forum.

[7]  A. Ott Isotope Separation by Thermal Diffusion in Liquid Metal , 1969, Science.

[8]  T. S. P. S.,et al.  GROWTH , 1924, Nature.

[9]  Andrew G. Glen,et al.  APPL , 2001 .

[10]  I. Belova,et al.  Molecular dynamics study of density, surface energy and self-diffusion in a liquid Ni50Al50 alloy , 2010 .

[11]  P. Mazur,et al.  Non-equilibrium thermodynamics, , 1963 .

[12]  L. J. T. M. Kempers,et al.  A comprehensive thermodynamic theory of the Soret effect in a multicomponent gas, liquid, or solid , 2001 .

[13]  H. Okamoto Al-Ni (aluminum-nickel) , 1993 .

[14]  L. Verlet Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules , 1967 .

[15]  M. Baskes,et al.  Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals , 1984 .

[16]  A. B. Lidiard,et al.  Computation of heats of transport in crystalline solids: II , 2008 .

[17]  B. Bhat Effect of thermotransport on directionally solidified aluminium-copper eutectic , 1975 .

[18]  Michael J. Mehl,et al.  Embedded-atom potential for B2-NiAl , 2002 .

[19]  K. Binder,et al.  Molecular-dynamics computer simulation of crystal growth and melting in Al50Ni50 , 2008, 0802.2529.

[20]  M. Gillan A simulation model for hydrogen in palladium. II. Mobility and thermotransport , 1987 .

[21]  On the nature of thermal diffusion in binary Lennard-Jones liquids , 1999, cond-mat/9910397.

[22]  H. Kreuzer Nonequilibrium thermodynamics and its statistical foundations , 1981 .

[23]  T. Tanabe,et al.  Thermomigration of tritium in V-4Cr-4Ti alloy , 2011 .

[24]  R. Swalin,et al.  Thermotransport of silver in liquid gold , 1972 .

[25]  M. Gerl Contribution au calcul des forces agissant sur une impurete d'un metal soumis a un gradient de temperature , 1967 .

[26]  M. Sugisaki,et al.  Thermal diffusion of tritium in Nb metal , 1981 .

[27]  Evans,et al.  Heat and matter transport in binary liquid mixtures. , 1986, Physical review. A, General physics.

[28]  C. Q. Ru,et al.  Thermomigration as a driving force for instability of electromigration induced mass transport in interconnect lines , 2000 .

[29]  P. Schelling,et al.  Computational methodology for analysis of the Soret effect in crystals: Application to hydrogen in palladium , 2012 .

[30]  Evans,et al.  Addendum to "Heat and matter transport in binary liquid mixtures" , 1987, Physical review. A, General physics.

[31]  A. Allnatt Time correlation formula for the heat of transport associated with atom-vacancy exchange in a crystal , 2001 .

[32]  G. McFadden,et al.  Morphological stability of a binary alloy: thermodiffusion and temperature-dependent diffusivity , 2001 .

[33]  Z. McDargh,et al.  Molecular-dynamics approach for determining the vacancy heat of transport , 2011 .

[34]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[35]  M. Gillan,et al.  Heat of transport in solids. III. Computer simulation of vacancy in an FCC crystal , 1978 .

[36]  R. Howard,et al.  Status of Linear Relations Among Heats of Transport , 1965 .

[37]  A. B. Lidiard,et al.  Computation of heats of transport of vacancies in model crystalline solids: III , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[38]  J. Brillo,et al.  The surface tension of liquid aluminium-based alloys , 2008 .

[39]  A. B. Lidiard,et al.  Atomic Transport in Solids: List of principal symbols , 1993 .

[40]  M. Saghir,et al.  Modeling of thermodiffusion in liquid metal alloys. , 2010, Physical chemistry chemical physics : PCCP.

[41]  P. Schelling,et al.  Atomic-scale simulation of the thermodiffusion of hydrogen in palladium , 2013 .

[42]  H. Okamoto Al-Ni (aluminum-nickel) , 2004 .

[43]  Vogelsang,et al.  Soret coefficient of isotopic Lennard-Jones mixtures and the Ar-Kr system as determined by equilibrium molecular-dynamics calculations. , 1987, Physical review. A, General physics.

[44]  S. Schneider,et al.  Change of the kinetics of solidification and microstructure formation induced by convection in the Ni–Al system , 2007 .

[45]  L. Onsager Reciprocal Relations in Irreversible Processes. II. , 1931 .

[46]  I. Belova,et al.  Molecular dynamics simulation of the thermophysical properties of an undercooled liquid Ni50Al50 alloy , 2010 .

[47]  J. Kirkwood,et al.  The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics , 1950 .

[48]  I. Kaban,et al.  Density and atomic volume in liquid Al–Fe and Al–Ni binary alloys , 2007 .

[49]  J. Kärger Atomic Transport in Solids , 1995 .

[50]  M. Saghir,et al.  Role of the velocity frame of reference in thermodiffusion in liquid mixtures , 2012 .

[51]  Leila Momenzadeh,et al.  Molecular dynamics prediction of phonon-mediated thermal conductivity of f.c.c. Cu , 2014 .

[52]  R. Kubo Statistical-Mechanical Theory of Irreversible Processes : I. General Theory and Simple Applications to Magnetic and Conduction Problems , 1957 .