Exploring Genetic Codon Expansion for Unnatural Amino Acid Incorporation in Filamentous Fungus Aspergillus nidulans.

[1]  N. Takaya,et al.  Cytosol Peroxiredoxin and Cell Surface Catalase Differentially Respond to H2O2 Stress in Aspergillus nidulans , 2023, Antioxidants.

[2]  J. Chin,et al.  Quintuply orthogonal pyrrolysyl-tRNA synthetase/tRNAPyl pairs , 2023, Nature Chemistry.

[3]  V. Corbu,et al.  Current Insights in Fungal Importance—A Comprehensive Review , 2023, Microorganisms.

[4]  P. Schultz,et al.  Expanding the genetic code , 2022, Protein science : a publication of the Protein Society.

[5]  L. James Genetic Code Expansion and Bio-Orthogonal Labeling Reveal Intact HIV-1 Capsids inside the Nucleus , 2022, mBio.

[6]  Zhemin Zhou,et al.  Increasing NADPH impairs fungal H2O2 resistance by perturbing transcriptional regulation of peroxiredoxin , 2022, Bioresources and Bioprocessing.

[7]  Xiaozhou Luo,et al.  Recent Technologies for Genetic Code Expansion and their Implications on Synthetic Biology Applications. , 2021, Journal of molecular biology.

[8]  Chunyan An,et al.  Overproduction of medicinal ergot alkaloids based on a fungal platform. , 2021, Metabolic engineering.

[9]  A. Driessen,et al.  Modular Synthetic Biology Toolkit for Filamentous Fungi , 2021, ACS synthetic biology.

[10]  Zhemin Zhou,et al.  Nitroreductase Increases Menadione-Mediated Oxidative Stress in Aspergillus nidulans , 2021, Applied and environmental microbiology.

[11]  T. Inada,et al.  Optimized protocol for tRNA identification in the ribosomal complexes from human cell lines , 2021, STAR protocols.

[12]  R. Mehl,et al.  An improved fluorescent noncanonical amino acid for measuring conformational distributions using time-resolved transition metal ion FRET , 2021, bioRxiv.

[13]  Jennifer A. Prescher,et al.  Bioorthogonal chemistry , 2021, Nature Reviews Methods Primers.

[14]  T. Schubert,et al.  Minimal genetically encoded tags for fluorescent protein labeling in living neurons , 2021, Nature Communications.

[15]  T. Inada,et al.  Failure to Degrade CAT-Tailed Proteins Disrupts Neuronal Morphogenesis and Cell Survival. , 2021, Cell reports.

[16]  Lucy J. Colwell,et al.  Rapid discovery and evolution of orthogonal aminoacyl-tRNA synthetase–tRNA pairs , 2020, Nature Biotechnology.

[17]  Han Xiao,et al.  Genetic Engineering of Filamentous Fungi for Efficient Protein Expression and Secretion , 2020, Frontiers in Bioengineering and Biotechnology.

[18]  Breanna L. Zerfas,et al.  Fluorescent Probes with Unnatural Amino Acids to Monitor Proteasome Activity in Real-Time. , 2020, ACS chemical biology.

[19]  G. Roelfes,et al.  Expanding the enzyme universe with genetically encoded unnatural amino acids , 2020, Nature Catalysis.

[20]  Hee-Sung Park,et al.  Site-Specific Labeling of Proteins Using Unnatural Amino Acids , 2019, Molecules and cells.

[21]  D. Söll,et al.  Aminoacyl-tRNA Synthetases and tRNAs for an Expanded Genetic Code: What Makes them Orthogonal? , 2019, International journal of molecular sciences.

[22]  Ville R. I. Kaila,et al.  Site-specific ubiquitylation and SUMOylation using genetic-code expansion and sortase , 2019, Nature Chemical Biology.

[23]  A. Chatterjee,et al.  Resurrecting the Bacterial Tyrosyl-tRNA Synthetase/tRNA Pair for Expanding the Genetic Code of Both E. coli and Eukaryotes. , 2018, Cell chemical biology.

[24]  Tillmann Heinisch,et al.  Artificial Metalloenzymes: Reaction Scope and Optimization Strategies. , 2018, Chemical reviews.

[25]  Jason W. Chin,et al.  Expanding and reprogramming the genetic code , 2017, Nature.

[26]  Prakriti Sharma Ghimire,et al.  Genetics, Molecular, and Proteomics Advances in Filamentous Fungi , 2017, Current Microbiology.

[27]  Abhishek Chatterjee,et al.  Virus-Enabled Optimization and Delivery of the Genetic Machinery for Efficient Unnatural Amino Acid Mutagenesis in Mammalian Cells and Tissues. , 2017, ACS synthetic biology.

[28]  K. Jo,et al.  Genetically encoded FRET sensors using a fluorescent unnatural amino acid as a FRET donor , 2016 .

[29]  Dieter Söll,et al.  Evolution of translation machinery in recoded bacteria enables multi-site incorporation of nonstandard amino acids , 2015, Nature Biotechnology.

[30]  S. Frye,et al.  Structure and Inhibition of Microbiome β-Glucuronidases Essential to the Alleviation of Cancer Drug Toxicity. , 2015, Chemistry & biology.

[31]  Yi Lu,et al.  Significant improvement of oxidase activity through the genetic incorporation of a redox-active unnatural amino acid , 2015, Chemical science.

[32]  Yi Lu,et al.  Defining the Role of Tyrosine and Rational Tuning of Oxidase Activity by Genetic Incorporation of Unnatural Tyrosine Analogs , 2015, Journal of the American Chemical Society.

[33]  Jason W. Chin,et al.  Efficient Multisite Unnatural Amino Acid Incorporation in Mammalian Cells via Optimized Pyrrolysyl tRNA Synthetase/tRNA Expression and Engineered eRF1 , 2014, Journal of the American Chemical Society.

[34]  J. Chin,et al.  Genetic Encoding of Photocaged Cysteine Allows Photoactivation of TEV Protease in Live Mammalian Cells , 2014, Journal of the American Chemical Society.

[35]  P. Schultz,et al.  A genetically encoded fluorescent probe in mammalian cells. , 2013, Journal of the American Chemical Society.

[36]  P. Schultz,et al.  A versatile platform for single- and multiple-unnatural amino acid mutagenesis in Escherichia coli. , 2013, Biochemistry.

[37]  J. Chin,et al.  Genetically encoding an aliphatic diazirine for protein photocrosslinking , 2011 .

[38]  Qian Wang,et al.  Expanding the genetic code for biological studies. , 2009, Chemistry & biology.

[39]  Peter G Schultz,et al.  Control of protein phosphorylation with a genetically encoded photocaged amino acid. , 2007, Nature chemical biology.

[40]  Ryan A Mehl,et al.  Improving nature's enzyme active site with genetically encoded unnatural amino acids. , 2006, Journal of the American Chemical Society.

[41]  Peter G Schultz,et al.  An Expanded Eukaryotic Genetic Code , 2003, Science.

[42]  S. Yokoyama,et al.  Site-specific incorporation of an unnatural amino acid into proteins in mammalian cells. , 2002, Nucleic acids research.

[43]  J Tilburn,et al.  Transformation by integration in Aspergillus nidulans. , 1983, Gene.

[44]  S. Hutner,et al.  SOME APPROACHES TO THE STUDY OF THE ROLE OF METALS IN THE METABOLISM OF MICROORGANISMS , 2016 .