Next Generation Cloud Computing Architecture: Enabling Real-Time Dynamism for Shared Distributed Physical Infrastructure

Cloud computing is fundamentally altering the expectations for how and when computing, storage and networking resources should be allocated, managed and consumed. End-users are increasingly sensitive to the latency of services they consume. Service Developers want the Service Providers to ensure or provide the capability to dynamically allocate and manage resources in response to changing demand patterns in real-time. Ultimately, Service Providers are under pressure to architect their infrastructure to enable real-time end-to-end visibility and dynamic resource management with fine grained control to reduce total cost of ownership while also improving agility. The current approaches to enabling real-time, dynamic infrastructure are inadequate, expensive and not scalable to support consumer mass-market requirements. Over time, the server-centric infrastructure management systems have evolved to become a complex tangle of layered systems designed to automate systems administration functions that are knowledge and labor intensive. This expensive and non-real time paradigm is ill suited for a world where customers are demanding communication, collaboration and commerce at the speed of light. Thanks to hardware assisted virtualization, and the resulting decoupling of infrastructure and application management, it is now possible to provide dynamic visibility and control of services management to meet the rapidly growing demand for cloud-based services. What is needed is a rethinking of the underlying operating system and management infrastructure to accommodate the ongoing transformation of the data center from the traditional server-centric architecture model to a cloud or network-centric model. This paper proposes and describes a reference model for a network-centric datacenter infrastructure management stack that borrows and applies key concepts that have enabled dynamism, scalability, reliability and security in the telecom industry, to the computing industry. Finally, the paper will describe a proof-of-concept system that was implemented to demonstrate how dynamic resource management can be implemented to enable real-time service assurance for network centric datacenter architecture.