Adjoint and Compensated Compactness Methods for Hamilton–Jacobi PDE

We investigate the vanishing viscosity limit for Hamilton–Jacobi PDE with nonconvex Hamiltonians, and present a new method to augment the standard viscosity solution approach. The main idea is to introduce a solution σε of the adjoint of the formal linearization, and then to integrate by parts with respect to the density σε. This procedure leads to a natural phase space kinetic formulation and also to a new compensated compactness technique.

[1]  Identification du cône dual des fonctions convexes et applications , 1998 .

[2]  Constantine M. Dafermos,et al.  Regularity and large time behaviour of solutions of a conservation law without convexity , 1985, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[3]  W. Fleming The convergence problem for differential games , 1961 .

[4]  Yuxi Zheng,et al.  Systems of conservation laws , 2001 .

[5]  Luc Tartar,et al.  Compensated compactness and applications to partial differential equations , 1979 .

[6]  Donald P. Ballou,et al.  Solutions to nonlinear hyperbolic Cauchy problems without convexity conditions , 1970 .

[7]  Wendell H. Fleming,et al.  12. The Convergence Problem for Differential Games, II , 1964 .

[8]  Lawrence C. Evans,et al.  Weak convergence methods for nonlinear partial differential equations , 1990 .

[9]  H. Fédérer Geometric Measure Theory , 1969 .

[10]  James Glimm,et al.  Wave Fronts for Hamilton-Jacobi Equations:¶The General Theory for Riemann Solutions in , 1997 .

[11]  P. Lions,et al.  Two approximations of solutions of Hamilton-Jacobi equations , 1984 .

[12]  B. Perthame,et al.  A kinetic formulation of multidimensional scalar conservation laws and related equations , 1994 .

[13]  三上 雅弘 The Cauchy problem for degenerate parabolic equations , 1997 .

[14]  J. Lions Optimal Control of Systems Governed by Partial Differential Equations , 1971 .

[15]  M. Bardi,et al.  Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations , 1997 .

[16]  B. Perthame,et al.  Kinetic formulation of the isentropic gas dynamics andp-systems , 1994 .

[17]  Yuxi Zheng,et al.  Systems of Conservation Laws: Two-Dimensional Riemann Problems , 2001 .

[18]  Spencer Frei,et al.  Weak convergence methods for nonlinear partial differential equations , 2012 .

[19]  A. Marson Nonconvex Conservation Laws and Ordinary Differential Equations , 2004 .

[20]  L. Evans,et al.  A survey of partial differential equations methods in weak KAM theory , 2004 .

[21]  Benoît Perthame,et al.  Kinetic formulation of conservation laws , 2002 .

[22]  P. Lions,et al.  Some Properties of Viscosity Solutions of Hamilton-Jacobi Equations. , 1984 .

[23]  Eitan Tadmor,et al.  COMPENSATED COMPACTNESS FOR 2D CONSERVATION LAWS , 2005 .