Stability analysis of planar systems with nilpotent (non-zero) linear part
暂无分享,去创建一个
[1] G. Belitskii. C∞-Normal Forms of Local Vector Fields , 2002 .
[2] J. Giné. On some open problems in planar differential systems and Hilbert’s 16th problem , 2007 .
[3] Henry Hermes,et al. Nilpotent and High-Order Approximations of Vector Field Systems , 1991, SIAM Rev..
[4] G. Gaeta. Poincaré Normal and Renormalized Forms , 2001, math-ph/0106027.
[5] S. Sastry,et al. Stabilization of nonlinear systems with uncontrollable linearization , 1988 .
[6] Laura Menini,et al. On the use of semi-invariants for the stability analysis of planar systems , 2008, 2008 47th IEEE Conference on Decision and Control.
[7] P. Holmes,et al. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.
[8] Jaume Llibre,et al. Qualitative classification of singular points , 2005 .
[9] L. Rosier. Homogeneous Lyapunov function for homogeneous continuous vector field , 1992 .
[10] A. Bacciotti,et al. Liapunov functions and stability in control theory , 2001 .
[11] I. Bendixson. Sur les courbes définies par des équations différentielles , 1901 .
[12] Wolfgang Hahn,et al. Stability of Motion , 1967 .
[13] Jaume Llibre,et al. Qualitative Theory of Planar Differential Systems , 2006 .
[14] F. Takens. Forced oscillations and bifurcations , 2001 .
[15] G. Vegter,et al. Global Analysis of Dynamical Systems: Festschrift dedicated to Floris Takens for his 60th birthday , 2001 .
[16] J. P. LaSalle,et al. Recent Advances in Liapunov Stability Theory , 1964 .