Dendritisch eingeschlossene aktive Zentren: Anwendung des Isolationsprinzips der Natur in der Biomimetik und den Materialwissenschaften

Unser gestiegenes Verstandnis der Struktur-Eigenschafts-Beziehungen einiger ausgewahlter Biomakromolekule hat – zusammen mit unseren verbesserten Fertigkeiten, Makromolekule mit einer strukturellen Genauigkeit, die der der Proteine nahekommt, herzustellen – den Horizont zu einem neuen Forschungsbereich geoffnet, der die Chemie und die Materialwissenschaften mit der Biologie verbindet. Wahrend die Natur im Laufe der Evolution kontinuierlich Prozesse wie Energietransfer oder Katalyse durch Selbstreplikations- und Reparaturfunktionen vervollkommnen konnte, hangen die Zuganglichkeit und der Nutzen synthetischer Makromolekule in erster Linie von unserem praparativen Konnen und von unserer Fahigkeit ab, Struktur und Funktion in unserem Design miteinander zu verbinden. So konnen wir Nutzen aus unserem Verstandnis der naturlichen Systeme ziehen, um strukturelle Charakteristika nachzuahmen und Funktionen zu optimieren. Um Eigenschaften zu realisieren, die im nichtorganisierten isotropen Zustand (bulk) unerreichbar waren, nutzen zahlreiche biologische Systeme das Isolationskonzept, bei dem ein aktives Zentrum oder eine katalytisch aktive Stelle innerhalb eines Proteins eingekapselt wird. Diesem Konzept folgend wurde die Fahigkeit dendritischer Hullen, funktionelle Zentren einzuschliesen und so spezifische, isolierte Nanoumgebungen zu schaffen, die die molekularen Eigenschaften des Zentrums beeinflussen, intensiv erforscht. Unter Nutzung der besonderen Eigenschaften der Dendrimerarchitektur wurden aktive Zentren mit photophysikalischen, photochemischen, elektrochemischen oder katalytischen Eigenschaften im Mittelpunkt des Dendrimers (als Dendrimerkern) platziert. Eine solche Anwendung des Isolationskonzeptes auf Probleme in der Materialforschung ist auf lange Sicht sehr viel versprechend, und bereits heute zeichnen sich erste Anwendungen u. a. beim Design verbesserter, optoelektronischer Bauelemente ab. Dieser Aufsatz konzentriert sich auf die Entwicklung dieses naturlichen Designprinzips, das wesentlich dazu beitragt, die Lucke zwischen zwei historisch so unterschiedlichen Disziplinen wie der Biologie und den Materialwissenschaften zu schliesen. Aktuelle Fortschritte sowohl in der Synthese von dendritisch eingekapselten Molekulen als auch in der Untersuchung ihrer Eigenschaften mit Hilfe einer Vielzahl von unterschiedlichen Methoden werden behandelt. Aus diesen Studien ergeben sich Erkenntnisse fur viele Anwendungen, die vom Design kunstlicher Enzyme und Katalysatoren sowie supermolekularer Lichtsammelsysteme bis hin zum Aufbau von isolierten molekularen Drahten, Leuchtdioden und Glasfaseroptiken reichen.

[1]  N. McKeown Phthalocyanine‐Containing Dendrimers , 1999 .

[2]  S. Nguyen,et al.  Hybrid nanoparticles with block copolymer shell structures , 1999 .

[3]  F. Diederich,et al.  Dendritic Porphyrins: Modulating Redox Potentials of Electroactive Chromophores with Pendant Multifunctionality , 1994 .

[4]  R. Azerad,et al.  MICROBIAL REDUCTION OF 2-CYANO-1-TETRALONES , 1995 .

[5]  C. Hawker,et al.  Dendritic Initiators for “Living” Radical Polymerizations: A Versatile Approach to the Synthesis of Dendritic-Linear Block Copolymers , 1996 .

[6]  D. Seebach,et al.  Dendritic styryl TADDOLs as novel polymer cross‐linkers: First application in an enantioselective Et2Zn addition mediated by a polymer‐incorporated titanate. Preliminary communication , 1997 .

[7]  V. Balzani,et al.  ELECTROCHEMICAL AND PHOTOCHEMICAL PROPERTIES OF METAL-CONTAINING DENDRIMERS , 1998 .

[8]  Chelladurai Devadoss,et al.  Energy transfer in dendritic macromolecules: Molecular size effects and the role of an energy gradient , 1996 .

[9]  A. Credi,et al.  Dendrimers with a Photoactive and Redox-Active [Ru(bpy)3]2+-Type Core: Photophysical Properties, Electrochemical Behavior, and Excited-State Electron-Transfer Reactions , 1999 .

[10]  A. Credi,et al.  Polynuclear metal complexes of nanometre size. A versatilesynthetic strategy leading to luminescent and redox-active dendrimers madeof an osmium(II)-based core and ruthenium(II)-basedunits in the branches , 1997 .

[11]  H. Abruña,et al.  Effects of dendrimer generation on site isolation of core moieties : Electrochemical and fluorescence quenching studies with metalloporphyrin core dendrimers , 1998 .

[12]  C. Hawker,et al.  Solvatochromism as a Probe of the Microenvironment in Dendritic Polyethers: Transition from an Extended to a Globular Structure , 1993 .

[13]  M. Fox,et al.  Chromophore-Labeled Dendrons as Light Harvesting Antennae , 1996 .

[14]  Jandeleit,et al.  Combinatorial Materials Science and Catalysis. , 1999, Angewandte Chemie.

[15]  C. Gorman Encapsulated electroactive molecules , 1997 .

[16]  J. Yoshida,et al.  Synthesis of optically active dendritic binaphthols and their metal complexes for asymmetric catalysis , 1998 .

[17]  J. Fréchet,et al.  A Rapid, Orthogonal Synthesis of Poly(benzyl ester) Dendrimers via an “Activated” Monomer Approach , 1999 .

[18]  Catherine J. Murphy,et al.  A Blue‐Emitting CdS/Dendrimer Nanocomposite , 1998 .

[19]  K. Karlin Metalloenzymes, structural motifs, and inorganic models. , 1993, Science.

[20]  Jeffrey S. Moore,et al.  Electroluminescent diodes from a single component emitting layer of dendritic macromolecules , 1996 .

[21]  T. Aida,et al.  ELEKTROSTATISCHE AGGREGATION VON DENDRITISCHEN ELEKTROLYTEN : NEGATIV UND POSITIV GELADENE PORPHYRIN-DENDRIMERE , 1998 .

[22]  C. Mak,et al.  Dendritic Bis(oxazoline)copper(II) Catalysts. 2.1 Synthesis, Reactivity, and Substrate Selectivity , 1997 .

[23]  R. Crooks,et al.  Homogeneous Hydrogenation Catalysis with Monodisperse, Dendrimer-Encapsulated Pd and Pt Nanoparticles. , 1999, Angewandte Chemie.

[24]  V. Catalano,et al.  REVERSIBLE C60 BINDING TO DENDRIMER-CONTAINING IR(CO)CL(PPH2R)2 COMPLEXES , 1997 .

[25]  Brandon L. Parkhurst,et al.  ENCAPSULATED ELECTROACTIVE MOLECULES BASED UPON AN INORGANIC CLUSTER SURROUNDED BY DENDRON LIGANDS , 1997 .

[26]  D. McGrath,et al.  Photoresponsive Azobenzene-Containing Dendrimers with Multiple Discrete States , 1999 .

[27]  V. Balzani,et al.  Dendrimers of Nanometer Size Based on Metal Complexes: Luminescent and Redox‐Active Polynuclear Metal Complexes Containing up to Twenty‐Two Metal Centers , 1995 .

[28]  Rainer E. Martin,et al.  Lineare monodisperse π-konjugierte Oligomere: mehr als nur Modellverbindungen für Polymere , 1999 .

[29]  V. Percec,et al.  Effect of Temperature on the Supramolecular Tubular Structure in Oriented Fibers of a Poly(methacrylate) with Tapered Side Groups , 1995 .

[30]  J. Fréchet,et al.  Self-Assembled Lanthanide-Cored Dendrimer Complexes: Enhancement of the Luminescence Properties of Lanthanide Ions through Site-Isolation and Antenna Effects , 1998 .

[31]  F. Diederich,et al.  Dioxygen and carbon monoxide binding in dendritic iron(ii)porphyrins , 1997 .

[32]  C. Hawker,et al.  Fullerene-bound dendrimers. Soluble, isolated carbon clusters , 1993 .

[33]  Josef Michl,et al.  Molecular Rods. 1. Simple Axial Rods. , 1999, Chemical reviews.

[34]  T. Aida,et al.  A Blue-Luminescent Dendritic Rod: Poly(phenyleneethynylene) within a Light-Harvesting Dendritic Envelope , 1999 .

[35]  David K. Smith,et al.  Dendritic biomimicry: microenvironmental effects on tryptophan fluorescence† , 1999 .

[36]  François Diederich,et al.  Dendritische Porphyrine: Modulation des Redoxpotentials elektroaktiver Chromophore durch periphere Multifunktionalität , 1994 .

[37]  S. Hackbarth,et al.  Globular Dendrimers Involving a C60 Core and a Tetraphenyl Porphyrin Function , 1999 .

[38]  N. W. Isaacs,et al.  Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria , 1995, Nature.

[39]  A. Schlüter,et al.  Polymerization of styrenes carrying dendrons of the first, second and third generation , 1996 .

[40]  Rabe,et al.  Dendronized Polymers: Synthesis, Characterization, Assembly at Interfaces, and Manipulation. , 2000, Angewandte Chemie.

[41]  P. Ivanova,et al.  Dendrimers as macroinitiators for anionic ring-opening polymerization. Polymerization of ε-caprolactone , 1994 .

[42]  F. Vögtle,et al.  Functional cascade molecules , 1998 .

[43]  Mingqi Zhao,et al.  Homogene katalytische Hydrierung mit monodispersen, dendrimerumhüllten Pd‐ und Pt‐Nanopartikeln , 1999 .

[44]  G. Newkome,et al.  Suprasupermolecules with Novel Properties: Metallodendrimers. , 1999, Chemical reviews.

[45]  D. Seebach,et al.  Dendritisch quervernetzende chirale Liganden – hohe Standfestigkeit eines polystyrolgebundenen Ti-TADDOLat-Katalysators unter Diffusionskontrolle , 1999 .

[46]  Stephen Z. D. Cheng,et al.  VISUALIZABLE CYLINDRICAL MACROMOLECULES WITH CONTROLLED STIFFNESS FROM BACKBONES CONTAINING LIBRARIES OF SELF-ASSEMBLING DENDRITIC SIDE GROUPS , 1998 .

[47]  Arieh Warshel,et al.  Protein Control of Redox Potentials of Iron−Sulfur Proteins , 1996 .

[48]  T. Aida,et al.  Self-Assembly of a Copper-Ligating Dendrimer that Provides a New Non-Heme Metalloprotein Mimic: “Dendrimer Effects” on Stability of the Bis(μ-oxo)dicopper(III) Core , 1999 .

[49]  T. Aida,et al.  ‘Caged’ porphyrin: the first dendritic molecule having a core photochemical functionality , 1993 .

[50]  P. Schultz,et al.  Combinatorial approaches to materials science , 1998 .

[51]  S. Hecht,et al.  Porphyrin Core Star Polymers: Synthesis, Modification, and Implication for Site Isolation , 1999 .

[52]  Y. H. Kim,et al.  Hyperbranched polymers 10 years after , 1998 .

[53]  K. Suslick,et al.  Shape-Selective Ligation to Dendrimer−Metalloporphyrins , 1999 .

[54]  Jean M. J. Fréchet,et al.  Effect of Core Structure on Photophysical and Hydrodynamic Properties of Porphyrin Dendrimers , 2000 .

[55]  O. Eckart Die neutralisierende Wirkung der aktivierten Bleicherden bei gesäuerten Schmierölen , 1925 .

[56]  W. Saenger,et al.  Toward Dendrimers with Cylindrical Shape in Solution , 1997 .

[57]  H. Chow,et al.  Dendritic Catalysts: Reactivity and Mechanism of the Dendritic Bis(oxazoline)metal Complex Catalyzed Diels−Alder Reaction† , 1997 .

[58]  F. Maltais,et al.  Hydroformylation Reactions with Rhodium-Complexed Dendrimers on Silica , 1999 .

[59]  J. Fréchet,et al.  Synthesis and Steady-State Photophysical Properties of Dye-Labeled Dendrimers Having Novel Oligothiophene Cores: A Comparative Study , 2000 .

[60]  L. Miller,et al.  Synthesis and electrochemistry of nanometer-scaled molecular dumbbells , 1999 .

[61]  K. Suslick,et al.  Dendrimer-metalloporphyrins: Synthesis and catalysis , 1996 .

[62]  S. Hayashi,et al.  Grafting of ‘dendrimer-like’ highly branched polymer onto ultrafine silica surface , 1998 .

[63]  W. Dehaen,et al.  Solvent Dependence of the Hydrodynamical Volume of Dendrimers with a Rubicene Core , 1998 .

[64]  F. Vögtle,et al.  Dendrimere: vom Design zur Anwendung – ein Fortschrittsbericht , 1999 .

[65]  Rainer E. Martin,et al.  Dendritic rods with a poly(triacetylene) backbone: insulated molecular wires , 1998 .

[66]  N. McKeown,et al.  Silicon Phthalocyanines with Axial Dendritic Substituents. , 1998, Angewandte Chemie.

[67]  K. Suslick,et al.  Shape selective epoxidation of alkenes by metalloporphyrin-dendrimers , 1996 .

[68]  Y. Tor,et al.  Toward self-assembling dendrimers: Metal complexation induces the assembly of hyperbranched structures , 1996 .

[69]  Madeleine Helliwell,et al.  Siliciumphthalocyanine mit axialen dendritischen Substituenten , 1998 .

[70]  Jeffrey S. Moore,et al.  Anomalous Shift in the Fluorescence Spectra of a High-Generation Dendrimer in Nonpolar Solvents , 1997 .

[71]  J. Reek,et al.  Catalysis in the core of a carbosilane dendrimer , 1999 .

[72]  Steven C. Zimmerman,et al.  Rapid synthesis of dendrimers by an orthogonal coupling strategy , 1996 .

[73]  G. Koten,et al.  Gas Sensor Materials Based on Metallodendrimers , 1999 .

[74]  Iñaki Morao,et al.  Dendritic Catalysts for the Nitroaldol (Henry) Reaction , 1997 .

[75]  M. F. Lappert,et al.  Thermisch stabile Heterozweikernkomplexe mit zweiwertigen Metallzentren der Gruppe 14: Ar2M−Sn[1,8-(NR)2C10H6] (M = Ge, Sn; Ar = 2,6-(Me2N)2C6H3; R = CH2tBu) , 1999 .

[76]  L. Echegoyen,et al.  Routes to Dendritic Networks: Bis‐Dendrimers by Coupling of Cascade Macromolecules through Metal Centers , 1995 .

[77]  C. Hawker,et al.  Synthesis and Catalytic Activity of Unimolecular Dendritic Reverse Micelles with “Internal” Functional Groups , 1999 .

[78]  E. W. Meijer,et al.  About Dendrimers: Structure, Physical Properties, and Applications. , 1999, Chemical reviews.

[79]  T. Aida,et al.  Electrostatic Assembly of Dendrimer Electrolytes: Negatively and Positively Charged Dendrimer Porphyrins. , 1998, Angewandte Chemie.

[80]  J. Rabe,et al.  Dendronisierte Polymere: Synthese, Charakterisierung, Grenzflächenverhalten und Manipulation , 2000 .

[81]  C. Reichardt,et al.  Solvent Effects in Organic Chemistry , 1979 .

[82]  E. Thomas,et al.  Fabrication of Quantum Dot/Polymer Composites: Phosphine-Functionalized Block Copolymers as Passivating Hosts for Cadmium Selenide Nanoclusters , 1997 .

[83]  J. Dawson,et al.  Heme-Containing Oxygenases. , 1996, Chemical reviews.

[84]  A. Kaifer,et al.  Electrochemistry of encapsulated redox centers , 2000 .

[85]  Karen L. Wooley,et al.  Verzweigte Monomere als Quelle für einen schnelleren Zugang zu Dendrimeren , 1994 .

[86]  J. Rabe,et al.  A dendritic nanocylinder - shape control through implementation of steric strain. , 1998 .

[87]  H. Chow,et al.  Dendritic Models of Redox Proteins: X‐ray Photoelectron Spectroscopy and Cyclic Voltammetry Studies of Dendritic bis(Terpyridine) iron(II) Complexes , 1996 .

[88]  Howard Turner,et al.  Kombinatorische Materialforschung und Katalyse , 1999 .

[89]  Shai Rubin,et al.  Control of the Structure and Functions of Biomaterials by Light , 1996 .

[90]  Graham R. Fleming,et al.  Light Harvesting and Energy Transfer in Laser-Dye-Labeled Poly(aryl ether) Dendrimers , 2000 .

[91]  Charles N. Moorefield,et al.  Wege zu dendritischen Netzwerken: Bis-Dendrimere durch Verknüpfung von Kaskadenmolekülen über Metallzentren† , 1995 .

[92]  Charles L. Wilkins,et al.  Double Exponential Dendrimer Growth , 1995 .

[93]  A. Hult,et al.  Double-Stage Convergent Approach for the Synthesis of Functionalized Dendritic Aliphatic Polyesters Based on 2,2-Bis(hydroxymethyl)propionic Acid , 1998 .

[94]  D. Reinhoudt,et al.  Controlled assembly of nanosized metallodendrimers , 1996 .

[95]  Rabe,et al.  A Poly(para-phenylene) with Hydrophobic and Hydrophilic Dendrons: Prototype of an Amphiphilic Cylinder with the Potential to Segregate Lengthwise. , 1999, Angewandte Chemie.

[96]  Steven C. Zimmerman,et al.  Dendrimers in Supramolecular Chemistry: From Molecular Recognition to Self-Assembly. , 1997, Chemical reviews.

[97]  Brandon L. Parkhurst,et al.  Use of a Paramagnetic Core to Affect Longitudinal Nuclear Relaxation in DendrimersA Tool for Probing Dendrimer Conformation , 1998 .

[98]  C. Ahn,et al.  Self-Encapsulation, Acceleration and Control in the Radical Polymerization of Monodendritic Monomers via Self-Assembly , 1997 .

[99]  Michael H. Abraham,et al.  Linear solvation energy relationships. 23. A comprehensive collection of the solvatochromic parameters, .pi.*, .alpha., and .beta., and some methods for simplifying the generalized solvatochromic equation , 1983 .

[100]  J. Fraser Stoddart,et al.  Dendrimers—Branching out from curiosities into new technologies , 1998 .

[101]  T. Aida,et al.  Aryl Ether Dendrimers with an Interior Metalloporphyrin Functionality as a Spectroscopic Probe: Interpenetrating Interaction with Dendritic Imidazoles , 1996 .

[102]  K. Hanabusa,et al.  Dendritic Metallophthalocyanines—Synthesis, Electrochemical Properties, and Catalytic Activities , 1999 .

[103]  D. Reinhoudt,et al.  Kontrollierter Aufbau nanometergroßer, metallorganischer Dendrimere , 1996 .

[104]  Rainer E. Martin,et al.  Linear Monodisperse π-Conjugated Oligomers: Model Compounds for Polymers and More. , 1999, Angewandte Chemie.

[105]  J. Fréchet,et al.  Light Harvesting and Energy Transfer in Novel Convergently Constructed Dendrimers. , 1999, Angewandte Chemie.

[106]  C. Ahn,et al.  Controlling polymer shape through the self-assembly of dendritic side-groups , 1998, Nature.

[107]  H. Frey,et al.  Heteroatom‐Based Dendrimers , 1998 .

[108]  Diederich,et al.  Dendritic Iron Porphyrins with Tethered Axial Ligands: New Model Compounds for Cytochromes. , 1999, Angewandte Chemie.

[109]  H. Chow,et al.  Facile construction of acid-base and redox stable polyether-based dendritic fragments , 1995 .

[110]  J. Fréchet,et al.  Functional polymers and dendrimers: reactivity, molecular architecture, and interfacial energy. , 1994, Science.

[111]  Zhenan Bao,et al.  Poly(phenylenevinylene)s with Dendritic Side Chains: Synthesis, Self-Ordering, and Liquid Crystalline Properties , 1998 .

[112]  Jean M. J. Fréchet,et al.  Hyperbranched macromolecules via a novel double-stage convergent growth approach , 1991 .

[113]  T. Aida,et al.  Photoinduced electron transfer reactions through dendrimer architecture , 1996 .

[114]  Peter J. Dandliker,et al.  Wasserlösliche dendritische Eisenporphyrine: synthetische Modelle für globuläre Häm‐Proteine , 1995 .

[115]  F. Diederich,et al.  Water‐Soluble Dendritic Iron Porphyrins: Synthetic Models of Globular Heme Proteins , 1996 .

[116]  T. Patten,et al.  Preparation of Structurally Well-Defined Polymer−Nanoparticle Hybrids with Controlled/Living Radical Polymerizations , 1999 .

[117]  Vincenzo Balzani,et al.  Luminescent and Redox-Active Polynuclear Transition Metal Complexes. , 1996, Chemical reviews.

[118]  H. Chow,et al.  The synthesis and properties of novel functional dendritic molecules , 1998 .

[119]  C. Hawker,et al.  Dendritic fullerenes; a new approach to polymer modification of C60 , 1994 .

[120]  J. Fréchet,et al.  A comparison of two convergent routes for the preparation of metalloporphyrin-core dendrimers: direct condensationvs. chemical modification , 1998 .

[121]  David K. Smith,et al.  Branched ferrocene derivatives: using redox potential to probe the dendritic interior† , 1999 .

[122]  Dennis K. P. Ng,et al.  Synthesis and photophysical properties of nonaggregated phthalocyanines bearing dendritic substituents , 1999 .

[123]  T. Emrick,et al.  Self-assembly of dendritic structures , 1999 .

[124]  A. Hirsch,et al.  The C60 Core: A Versatile Tecton for Dendrimer Chemistry , 1997 .

[125]  F. Diederich,et al.  Functional Dendrimers: Unique Biological Mimics , 1998 .

[126]  Itamar Willner,et al.  Steuerung der Struktur und Funktion von Biomakromolekülen durch Licht , 1996 .

[127]  J. Fréchet,et al.  Two-step approach towards the accelerated synthesis of dendritic macromolecules , 1993 .

[128]  E. Constable,et al.  A new convergent strategy for high-nuclearity metallodendrimers , 1996 .

[129]  Charles H. Martin,et al.  Design, Synthesis, and Photodynamics of Light-Harvesting Arrays Comprised of a Porphyrin and One, Two, or Eight Boron-Dipyrrin Accessory Pigments , 1998 .

[130]  C. Bolm,et al.  Hyperbranched Macromolecules in Asymmetric Catalysis , 1996 .

[131]  A. Schlüter,et al.  Ein Poly(para-phenylen) mit hydrophilen und hydrophoben Dendronen: Prototyp eines amphiphilen Zylinders mit dem Potential zur Segregation längs der Hauptachse , 1999 .

[132]  J. Gisselbrecht,et al.  Dendritische Eisenporphyrine mit kovalent fixierten axialen Liganden: neue Modellsysteme für Cytochrome , 1999 .

[133]  A. Caminade,et al.  Dendrimers containing heteroatoms (si, p, B, ge, or bi). , 1999, Chemical reviews.

[134]  S. Hecht,et al.  AN ALTERNATIVE SYNTHETIC APPROACH TOWARD DENDRITIC MACROMOLECULES : NOVEL BENZENE-CORE DENDRIMERS VIA ALKYNE CYCLOTRIMERIZATION , 1999 .

[135]  E. Solomon,et al.  Multicopper Oxidases and Oxygenases. , 1996, Chemical reviews.

[136]  A. Schlüter,et al.  Ordered Dendritic Nanorods with a Poly(p-phenylene) Backbone , 1998 .

[137]  Richard M. Crooks,et al.  Preparation of Cu Nanoclusters within Dendrimer Templates , 1998 .

[138]  Jeffrey S. Moore,et al.  Design and synthesis of a convergent and directional molecular antenna , 1994 .

[139]  D. Seebach,et al.  Dendritic TADDOLs: Synthesis, Characterization and Use in the Catalytic Enantioselective Addition of Et2Zn to Benzaldehyde , 1999 .

[140]  J. Fréchet,et al.  Well-Defined Triblock Hybrid Dendrimers Based on Lengthy Oligothiophene Cores and Poly(benzyl ether) Dendrons , 1998 .

[141]  Kangyi Chen,et al.  Synthesis of a Series of Focally-Substituted Organothiol Dendrons , 1996 .

[142]  T. Aida,et al.  Photoisomerization in dendrimers by harvesting of low-energy photons , 1997, Nature.

[143]  V. Balzani,et al.  Dendritic Bipyridine Ligands and Their Tris(Bipyridine)Ruthenium(II) Chelates—Syntheses, Absorption Spectra, and Photophysical Properties , 1997 .

[144]  Jeffrey S. Moore,et al.  Anomale Verschiebung in den Fluoreszenzspektren eines Dendrimers hoher Generation in unpolaren Lösungsmitteln , 1997 .

[145]  Zhishan Bo,et al.  Synthesis of Amphiphilic Poly(p-phenylene)s with Pendant Dendrons and Linear Chains , 2000 .

[146]  T. Aida,et al.  A dendritic iron porphyrin as a novel haemoprotein mimic: effects of the dendrimer cage on dioxygen-binding activity , 1996 .

[147]  Lajos P. Balogh,et al.  Poly(Amidoamine) Dendrimer-Templated Nanocomposites. 1. Synthesis of Zerovalent Copper Nanoclusters , 1998 .

[148]  A. Kaifer,et al.  Asymmetric Redox-Active Dendrimers Containing a Ferrocene Subunit. Preparation, Characterization, and Electrochemistry , 1998 .

[149]  Gossage,et al.  Diagnostic organometallic and metallodendritic materials for SO2 gas detection: reversible binding of sulfur dioxide to arylplatinum(II) complexes , 2000, Chemistry.

[150]  A. Schlüter,et al.  Dendrimers with Polymeric Core: Towards Nanocylinders , 1998 .

[151]  I. Samuel,et al.  CONJUGATED DENDRIMERS FOR LIGHT-EMITTING DIODES : EFFECT OF GENERATION , 1999 .

[152]  B. Voit Dendritic polymers: from aesthetic macromolecules to commercially interesting materials , 1995 .

[153]  D. Seebach,et al.  Dendritically Cross-Linking Chiral Ligands: High Stability of a Polystyrene-Bound Ti-TADDOLate Catalyst with Diffusion Control. , 1999, Angewandte Chemie.

[154]  Jean M. J. Fréchet,et al.  A “Branched-Monomer Approach” for the Rapid Synthesis of Dendimers† , 1994 .

[155]  A. Kaifer,et al.  MOLECULAR ORIENTATION EFFECTS ON THE RATES OF HETEROGENEOUS ELECTRON TRANSFER OF UNSYMMETRIC DENDRIMERS , 1999 .

[156]  J. Lindsey,et al.  Rothemund and Adler-Longo reactions revisited: synthesis of tetraphenylporphyrins under equilibrium conditions , 1987 .

[157]  T. Emrick,et al.  A TEMPO‐mediated “living” free‐radical approach to ABA triblock dendritic linear hybrid copolymers , 1999 .

[158]  H. Brunner Dendrizymes: Expanded ligands for enantioselective catalysis , 1995 .

[159]  V. Balzani,et al.  Supramolecular dendrimers with a [Ru(bpy)3]2+ core and naphthyl peripheral units , 1999 .

[160]  J. Fréchet,et al.  Das Sammeln von Licht und die Energieübertragung in neuen konvergent aufgebauten Dendrimeren , 1999 .

[161]  Gerhard Wegner,et al.  Electronic Materials: The Oligomer Approach , 1998 .

[162]  Peter Lindner,et al.  How dendrons stiffen polymer chains: A SANS study. , 1999 .

[163]  C. Hawker,et al.  The synthesis and polymerization of a hyperbranched polyether macromonomer , 1992 .

[164]  Michael S. Wendland,et al.  SYNTHESIS OF CORED DENDRIMERS , 1999 .

[165]  A. Schlüter,et al.  Dendronized polystyrenes with hydroxy and amino groups in the periphery , 1998 .

[166]  E. W. Meijer,et al.  A multi-O2 complex derived from a copper(I) dendrimer , 1999 .

[167]  Y. Yamaguchi,et al.  Dendritic metallophthalocyanines: synthesis and characterization of a zinc(ii) phthalocyanine[8]3-arborol , 1997 .

[168]  V. Balzani,et al.  A tridecanuclear ruthenium(II)-polypyridine supramolecular species : synthesis, absorption and luminescence properties, and electrochemical oxidation , 1992 .

[169]  C. Ahn,et al.  Molecular Conformations of Monodendron-Jacketed Polymers by Scanning Force Microscopy , 1999 .