Unsupervised Clustering of Depth Images Using Watson Mixture Model

In this paper, we propose an unsupervised clustering method for axially symmetric directional unit vectors. Our method exploits the Watson distribution and Bregman Divergence within a Model Based Clustering framework. The main objectives of our method are: (a) provide efficient solution to estimate the parameters of a Watson Mixture Model (WMM), (b) generate a set of WMMs and (b) select the optimal model. To this aim, we develop: (a) an efficient soft clustering method, (b) a hierarchical clustering approach in parameter space and (c) a model selection strategy by exploiting information criteria and an evaluation graph. We empirically validate the proposed method using synthetic data. Next, we apply the method for clustering image normals and demonstrate that the proposed method is a potential tool for analyzing the depth image.

[1]  Vassilios Morellas,et al.  Dirichlet process mixture models on symmetric positive definite matrices for appearance clustering in video surveillance applications , 2011, CVPR 2011.

[2]  Gilles Celeux,et al.  Combining Mixture Components for Clustering , 2010, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.

[3]  Jacob Goldberger,et al.  Hierarchical Clustering of a Mixture Model , 2004, NIPS.

[4]  Reinhold Häb-Umbach,et al.  Blind speech separation employing directional statistics in an Expectation Maximization framework , 2010, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.

[5]  Gérard Govaert,et al.  Assessing a Mixture Model for Clustering with the Integrated Completed Likelihood , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  G. Galimberti,et al.  A unified framework for model-based clustering, linear regression and multiple cluster structure detection , 2015, 1510.03245.

[7]  I. Dhillon,et al.  Modeling Data using Directional Distributions , 2003 .

[8]  Frank Nielsen,et al.  Simplification and hierarchical representations of mixtures of exponential families , 2010 .

[9]  A. Trémeau,et al.  Hierarchical von Mises-Fisher Mixture Model , 2013 .

[10]  Markus Breitenbach,et al.  Mixture of Watson Distributions: A Generative Model for Hyperspherical Embeddings , 2007, AISTATS.

[11]  Anil K. Jain,et al.  Unsupervised Learning of Finite Mixture Models , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Philip Chan,et al.  Determining the number of clusters/segments in hierarchical clustering/segmentation algorithms , 2004, 16th IEEE International Conference on Tools with Artificial Intelligence.

[13]  Suvrit Sra,et al.  The multivariate Watson distribution: Maximum-likelihood estimation and other aspects , 2011, J. Multivar. Anal..

[14]  Tomohiro Nakatani,et al.  An integration of source location cues for speech clustering in distributed microphone arrays , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[15]  Olivier Alata,et al.  Is there a best color space for color image characterization or representation based on Multivariate Gaussian Mixture Model? , 2009, Comput. Vis. Image Underst..

[16]  Volodymyr Melnykov,et al.  Finite mixture models and model-based clustering , 2010 .

[17]  Derek Hoiem,et al.  Indoor Segmentation and Support Inference from RGBD Images , 2012, ECCV.

[18]  Inderjit S. Dhillon,et al.  Clustering with Bregman Divergences , 2005, J. Mach. Learn. Res..