Compression of synthetic aperture radar phase history data using trellis coded quantization techniques

Synthetic aperture radar (SAR) is a remote-sensing technology which uses the motion of the radar transmitter to synthesize an antenna aperture much larger than the actual antenna aperture to yield high spatial resolution radar images. Trellis coded quantization (TCQ) techniques are shown to provide a high performance, low bit-error sensitivity solution to the problem of downlink data rate reduction for SAR systems. Trellis coded vector quantization (TCVQ) and universal trellis coded quantization (UTCQ) coding systems are implemented and compared with other data compression schemes (block adaptive quantization (BAQ or BFPQ) and vector quantization (VQ)) that can be used to compress SAR phase history data.

[1]  Ron Kwok,et al.  Block adaptive quantization of Magellan SAR data , 1989 .

[2]  Andrew G. Tescher,et al.  Practical transform coding of multispectral imagery , 1995, IEEE Signal Process. Mag..

[3]  Charles V. Jakowatz,et al.  A new look at spotlight mode synthetic aperture radar as tomography: imaging 3-D targets , 1995, IEEE Trans. Image Process..

[4]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[5]  Herbert Gish,et al.  Asymptotically efficient quantizing , 1968, IEEE Trans. Inf. Theory.

[6]  Joel Max,et al.  Quantizing for minimum distortion , 1960, IRE Trans. Inf. Theory.

[7]  John C. Curlander,et al.  Synthetic Aperture Radar: Systems and Signal Processing , 1991 .

[8]  Robert G. Gallager,et al.  Variations on a theme by Huffman , 1978, IEEE Trans. Inf. Theory.

[9]  Michael W. Marcellin,et al.  Universal trellis coded quantization , 1999, IEEE Trans. Image Process..

[10]  Dariush Divsalar,et al.  Introduction to Trellis-Coded Modulation With Applications , 1991 .

[11]  Michael W. Marcellin,et al.  Performance of adaptive prediction algorithms for trellis coded quantization of speech , 1994, IEEE Trans. Commun..

[12]  Thomas R. Fischer,et al.  Vector Quantizer Design for Memoryless Gaussian, Gamma, and Laplacian Sources , 1984, IEEE Trans. Commun..

[13]  R. Gray,et al.  Vector quantization , 1984, IEEE ASSP Magazine.

[14]  H. Scudder Introduction to computer aided tomography , 1978, Proceedings of the IEEE.

[15]  Mehrdad Soumekh,et al.  Reconnaissance with ultra wideband UHF synthetic aperture radar , 1995, IEEE Signal Process. Mag..

[16]  Allen Gersho,et al.  Vector quantization and signal compression , 1991, The Kluwer international series in engineering and computer science.

[17]  Robert M. Gray,et al.  An Algorithm for Vector Quantizer Design , 1980, IEEE Trans. Commun..

[18]  N. Jayant,et al.  Digital Coding of Waveforms: Principles and Applications to Speech and Video , 1990 .

[19]  W. Carrara,et al.  Spotlight synthetic aperture radar : signal processing algorithms , 1995 .

[20]  Nader Moayeri,et al.  Trellis coded vector quantization , 1992, IEEE Trans. Commun..

[21]  D. Huffman A Method for the Construction of Minimum-Redundancy Codes , 1952 .

[22]  Glen G. Langdon,et al.  An Introduction to Arithmetic Coding , 1984, IBM J. Res. Dev..

[23]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[24]  Charles V. Jakowatz,et al.  Spotlight-Mode Synthetic Aperture Radar: A Signal Processing Approach , 1996 .

[25]  Dale A. Ausherman,et al.  Developments in Radar Imaging , 1984, IEEE Transactions on Aerospace and Electronic Systems.

[26]  Khalid Sayood,et al.  Introduction to Data Compression , 1996 .

[27]  V. D. Vaughn,et al.  System considerations for multispectral image compression designs , 1995, IEEE Signal Process. Mag..

[28]  D. Munson,et al.  A tomographic formulation of spotlight-mode synthetic aperture radar , 1983, Proceedings of the IEEE.

[29]  William A. Pearlman,et al.  Optimal encoding of discrete-time continuous-amplitude memoryless sources with finite output alphabets , 1980, IEEE Trans. Inf. Theory.

[30]  Nariman Farvardin,et al.  Optimum quantizer performance for a class of non-Gaussian memoryless sources , 1984, IEEE Trans. Inf. Theory.

[31]  Thomas R. Fischer,et al.  Image subband coding using arithmetic coded trellis coded quantization , 1995, IEEE Trans. Circuits Syst. Video Technol..

[32]  F. Natterer The Mathematics of Computerized Tomography , 1986 .

[33]  Gottfried Ungerboeck,et al.  Channel coding with multilevel/phase signals , 1982, IEEE Trans. Inf. Theory.

[34]  Jr. G. Forney,et al.  The viterbi algorithm , 1973 .

[35]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[36]  David William Hawkins,et al.  Synthetic aperture imaging algorithms : with application to wide bandwidth sonar , 1996 .

[37]  Donald E. Knuth,et al.  Dynamic Huffman Coding , 1985, J. Algorithms.

[38]  Gabor T. Herman,et al.  Image Reconstruction From Projections , 1975, Real Time Imaging.

[39]  Ian H. Witten,et al.  Arithmetic coding for data compression , 1987, CACM.

[40]  Michael W. Marcellin,et al.  Trellis coded quantization of memoryless and Gauss-Markov sources , 1990, IEEE Trans. Commun..

[41]  J. Goodman Some fundamental properties of speckle , 1976 .

[42]  Anil K. Jain Fundamentals of Digital Image Processing , 2018, Control of Color Imaging Systems.

[43]  Richard W. Christiansen,et al.  A computation compression technique for linear algorithms , 1989 .

[44]  J.L.C. Sanz,et al.  Image reconstruction from frequency-offset Fourier data , 1984, Proceedings of the IEEE.

[45]  James Henry. Kasner Adaptive wavelet compression of imagery. , 1995 .

[46]  Jack Walker,et al.  Range-Doppler Imaging of Rotating Objects , 1980, IEEE Transactions on Aerospace and Electronic Systems.