The Deepest Regression Method

Deepest regression (DR) is a method for linear regression introduced by P. J. Rousseeuw and M. Hubert (1999, J. Amer. Statis. Assoc.94, 388?402). The DR method is defined as the fit with largest regression depth relative to the data. In this paper we show that DR is a robust method, with breakdown value that converges almost surely to 1/3 in any dimension. We construct an approximate algorithm for fast computation of DR in more than two dimensions. From the distribution of the regression depth we derive tests for the true unknown parameters in the linear regression model. Moreover, we construct simultaneous confidence regions based on bootstrapped estimates. We also use the maximal regression depth to construct a test for linearity versus convexity/concavity. We extend regression depth and deepest regression to more general models. We apply DR to polynomial regression and show that the deepest polynomial regression has breakdown value 1/3. Finally, DR is applied to the Michaelis?Menten model of enzyme kinetics, where it resolves a long-standing ambiguity.

[1]  N A Cressie,et al.  The underlying structure of the direct linear plot with application to the analysis of hormone-receptor interactions. , 1979, Journal of steroid biochemistry.

[2]  G. Scatchard,et al.  THE ATTRACTIONS OF PROTEINS FOR SMALL MOLECULES AND IONS , 1949 .

[3]  Stefan Langerman,et al.  An optimal algorithm for hyperplane depth in the plane , 2000, SODA '00.

[4]  Katrien van Driessen,et al.  A Fast Algorithm for the Minimum Covariance Determinant Estimator , 1999, Technometrics.

[5]  I. Mizera On depth and deep points: a calculus , 2002 .

[6]  Z. Bai,et al.  Asymptotic distributions of the maximal depth estimators for regression and multivariate location , 1999 .

[7]  Peter J. Rousseeuw,et al.  ROBUST REGRESSION BY MEANS OF S-ESTIMATORS , 1984 .

[8]  Bettina Speckmann,et al.  Efficient algorithms for maximum regression depth , 1999, SCG '99.

[9]  David Eppstein,et al.  Regression Depth and Center Points , 1998, Discret. Comput. Geom..

[10]  Georg Ch. Pflug,et al.  Mathematical statistics and applications , 1985 .

[11]  P. Rousseeuw Multivariate estimation with high breakdown point , 1985 .

[12]  Peter J. Rousseeuw,et al.  Robust regression and outlier detection , 1987 .

[13]  V. Yohai,et al.  Min-Max Bias Robust Regression. , 1989 .

[14]  P. Rousseeuw Least Median of Squares Regression , 1984 .

[15]  J. Haldane,et al.  Graphical Methods in Enzyme Chemistry , 1957, Nature.

[16]  David J. Hand,et al.  A Handbook of Small Data Sets , 1993 .

[17]  Burton Zwick,et al.  Inflation, Real Balances, Output, and Real Stock Returns [Stock Returns, Real Activity, Inflation, and Money] , 1985 .

[18]  D. Burk,et al.  The Determination of Enzyme Dissociation Constants , 1934 .

[19]  P. Rousseeuw,et al.  Robustness of Deepest Regression , 2000 .

[20]  N A Cressie,et al.  Analysing data from hormone-receptor assays. , 1981, Biometrics.

[21]  I. Mizera,et al.  Continuity of Halfspace Depth Contours and Maximum Depth Estimators: Diagnostics of Depth-Related Methods , 2002 .

[22]  D. Donoho,et al.  Breakdown Properties of Location Estimates Based on Halfspace Depth and Projected Outlyingness , 1992 .

[23]  Yijun Zuo,et al.  Some quantitative relationships between two types of finite sample breakdown point , 2001 .

[24]  W. Härdle,et al.  Robust and Nonlinear Time Series Analysis , 1984 .

[25]  Peter Rousseeuw,et al.  Computing location depth and regression depth in higher dimensions , 1998, Stat. Comput..

[26]  H. E. Daniels,et al.  A Distribution-Free Test for Regression Parameters , 1954 .

[27]  J. Lamperti ON CONVERGENCE OF STOCHASTIC PROCESSES , 1962 .

[28]  P. Rousseeuw,et al.  A fast algorithm for the minimum covariance determinant estimator , 1999 .

[29]  Regina Y. Liu,et al.  Regression depth. Commentaries. Rejoinder , 1999 .