Monte Carlo simulation of liquid n-alkanes. I: Intramolecular structure and thermodynamics

The conformational properties of liquid n‐alkanes (ranging from n‐pentane to n‐decane) have been investigated using Monte Carlo computer simulation techniques. The method of simulation combines the ‘‘reptation’’ method with a scheme of preferential sampling, which leads to an improvement of the simulation efficiency. The change of internal properties and structure as an effect of the density is studied.

[1]  C. Vega,et al.  Potential parameters of methyl and methylene obtained from second virial coefficients of n-alkanes , 1991 .

[2]  Minoru Katō,et al.  High pressure study on molecular conformational equilibria of n‐pentane , 1991 .

[3]  K. G. Honnell,et al.  Local structure of polyethylene melts , 1991 .

[4]  W. Howells,et al.  PULSED NEUTRON DIFFRACTION OF LIQUID N-BUTANE , 1990 .

[5]  C. Hall,et al.  Molecular-dynamics simulation results for the pressure of hard-chain fluids , 1990 .

[6]  Søren Toxvaerd,et al.  Molecular dynamics calculation of the equation of state of alkanes , 1990 .

[7]  J. I. Siepmann,et al.  A method for the direct calculation of chemical potentials for dense chain systems , 1990 .

[8]  N. G. Almarza,et al.  Monte Carlo simulations of liquid n-butane , 1990 .

[9]  J. O’Connell,et al.  Molecular dynamics simulations of hydrocarbon chains , 1990 .

[10]  J. Clarke,et al.  A direct method of studying reaction rates by equilibrium molecular dynamics: Application to the kinetics of isomerization in liquid n‐butane , 1990 .

[11]  J. Harwell,et al.  Solution of reference interaction site model for mixtures of short-chain polyatomic molecules , 1989 .

[12]  A. Narten,et al.  X‐ray diffraction study of liquid n‐butane at 140 and 267 K , 1989 .

[13]  J. H. Weiner,et al.  Contribution of covalent bond force to pressure in polymer melts , 1989 .

[14]  D. Y. Yoon,et al.  Off‐lattice Monte Carlo simulations of polymer melts confined between two plates , 1988 .

[15]  Søren Toxvaerd,et al.  Molecular dynamics of liquid butane , 1988 .

[16]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[17]  K. Schweizer,et al.  Theory of Polymer Melts: An Integral Equation Approach' , 1987 .

[18]  J. Clarke,et al.  Molecular dynamics computer simulation of chain molecule liquids , 1986 .

[19]  Gary P. Morriss,et al.  Constrained molecular dynamics: Simulations of liquid alkanes with a new algorithm , 1986 .

[20]  C. Hall,et al.  Local Structure of Fluids Containing Short-Chain Molecules via Monte Carlo Simulation , 1986 .

[21]  J. Santamaria,et al.  The effect of intermolecular potential model on the structure and conformational equilibrium of liquid n‐butane , 1985 .

[22]  William L. Jorgensen,et al.  Optimized intermolecular potential functions for liquid hydrocarbons , 1984 .

[23]  R. G. Snyder,et al.  Effects of pressure on conformer equilibria in liquid n‐hexane , 1983 .

[24]  K. Shiokawa,et al.  Conformational Enthalpy Difference of n-Alkanes , 1983 .

[25]  W. L. Jorgensen Pressure dependence of the structure and properties of liquid n-butane , 1981 .

[26]  W. L. Jorgensen,et al.  Structures and properties of organic liquids: n-butane and 1,2-dichloroethane and their conformation equilibriums , 1981 .

[27]  R. G. Snyder,et al.  Raman spectra of liquid n‐alkanes. II. Longitudinal acoustic modes and the gauche–trans energy difference , 1980 .

[28]  David M. Ceperley,et al.  Investigations of static properties of model bulk polymer fluids , 1980 .

[29]  M. Volkenstein,et al.  Statistical mechanics of chain molecules , 1970 .

[30]  L. Duenkel,et al.  Topics in Current Physics , 1991 .

[31]  N. G. Almarza,et al.  Statistical mechanics of small chain molecular liquids. II. Structure and thermodynamic properties of modeled n‐butane liquid , 1989 .

[32]  Austin J. Barnes,et al.  Molecular liquids : dynamics and interactions , 1984 .

[33]  Jean-Paul Ryckaert,et al.  Molecular dynamics of liquid alkanes , 1978 .

[34]  J. D. Cox,et al.  Thermochemistry of organic and organometallic compounds , 1970 .