Hyperbolic Neural Collaborative Recommender

This paper explores the use of hyperbolic geometry and deep learning techniques for recommendation. We presentHyperbolicNeural CollaborativeRecommender (HNCR), a deep hyperbolic representation learningmethod that exploits mutual semantic relations among users/items for collaborative filtering (CF) tasks. HNCR contains two major phases: neighbor construction and recommendation framework. The first phase introduces a neighbor construction strategy to construct a semantic neighbor set for each user and item according to the user-item historical interaction. In the second phase, we develop a deep framework based on hyperbolic geometry to integrate constructed neighbor sets into recommendation. Via a series of extensive experiments, we show that HNCR outperforms its Euclidean counterpart and state-of-the-art baselines.

[1]  Andrew W. Moore,et al.  New Algorithms for Efficient High-Dimensional Nonparametric Classification , 2006, J. Mach. Learn. Res..

[2]  Amin Vahdat,et al.  Hyperbolic Geometry of Complex Networks , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Greg Linden,et al.  Amazon . com Recommendations Item-to-Item Collaborative Filtering , 2001 .

[4]  Steven Skiena,et al.  DeepWalk: online learning of social representations , 2014, KDD.

[5]  Le Wu,et al.  A Neural Influence Diffusion Model for Social Recommendation , 2019, SIGIR.

[6]  Steffen Rendle,et al.  Factorization Machines , 2010, 2010 IEEE International Conference on Data Mining.

[7]  Jun Wang,et al.  Unifying user-based and item-based collaborative filtering approaches by similarity fusion , 2006, SIGIR.

[8]  Mingzhe Wang,et al.  LINE: Large-scale Information Network Embedding , 2015, WWW.

[9]  Yehuda Koren,et al.  Factorization meets the neighborhood: a multifaceted collaborative filtering model , 2008, KDD.

[10]  Yehuda Koren,et al.  Matrix Factorization Techniques for Recommender Systems , 2009, Computer.

[11]  Tat-Seng Chua,et al.  Neural Collaborative Filtering , 2017, WWW.

[12]  Jon Louis Bentley,et al.  Multidimensional binary search trees used for associative searching , 1975, CACM.

[13]  Huanbo Luan,et al.  Discrete Collaborative Filtering , 2016, SIGIR.

[14]  Christopher De Sa,et al.  Representation Tradeoffs for Hyperbolic Embeddings , 2018, ICML.

[15]  Tat-Seng Chua,et al.  Neural Graph Collaborative Filtering , 2019, SIGIR.

[16]  A. Ungar Hyperbolic trigonometry and its application in the Poincaré ball model of hyperbolic geometry , 2001 .

[17]  Martin Ester,et al.  Collaborative Denoising Auto-Encoders for Top-N Recommender Systems , 2016, WSDM.

[18]  Douwe Kiela,et al.  Poincaré Embeddings for Learning Hierarchical Representations , 2017, NIPS.

[19]  Silvere Bonnabel,et al.  Stochastic Gradient Descent on Riemannian Manifolds , 2011, IEEE Transactions on Automatic Control.

[20]  Chuan Shi,et al.  Multiplex Memory Network for Collaborative Filtering , 2020, SDM.

[21]  Bin Shen,et al.  Collaborative Memory Network for Recommendation Systems , 2018, SIGIR.

[22]  Abraham Albert Ungar,et al.  A Gyrovector Space Approach to Hyperbolic Geometry , 2009, A Gyrovector Space Approach to Hyperbolic Geometry.

[23]  Thomas Hofmann,et al.  Hyperbolic Entailment Cones for Learning Hierarchical Embeddings , 2018, ICML.

[24]  Yifan Hu,et al.  Collaborative Filtering for Implicit Feedback Datasets , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[25]  Albert-László Barabási,et al.  Hierarchical organization in complex networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  Douwe Kiela,et al.  Learning Continuous Hierarchies in the Lorentz Model of Hyperbolic Geometry , 2018, ICML.

[27]  Shujian Huang,et al.  Deep Matrix Factorization Models for Recommender Systems , 2017, IJCAI.

[28]  Gao Cong,et al.  HyperML: A Boosting Metric Learning Approach in Hyperbolic Space for Recommender Systems , 2018, WSDM.

[29]  Meng Wang,et al.  Revisiting Graph based Collaborative Filtering: A Linear Residual Graph Convolutional Network Approach , 2020, AAAI.

[30]  Gary Bécigneul,et al.  Poincaré GloVe: Hyperbolic Word Embeddings , 2018, ICLR.

[31]  Tat-Seng Chua,et al.  Neural Factorization Machines for Sparse Predictive Analytics , 2017, SIGIR.

[32]  Razvan Pascanu,et al.  Hyperbolic Attention Networks , 2018, ICLR.

[33]  Jure Leskovec,et al.  Hyperbolic Graph Convolutional Neural Networks , 2019, NeurIPS.

[34]  Yanfang Ye,et al.  Hyperbolic Graph Attention Network , 2019, IEEE Transactions on Big Data.

[35]  Wenwu Zhu,et al.  Structural Deep Network Embedding , 2016, KDD.

[36]  Stephen M. Omohundro,et al.  Five Balltree Construction Algorithms , 2009 .

[37]  Yongdong Zhang,et al.  LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation , 2020, SIGIR.

[38]  Mark Coates,et al.  Multi-graph Convolution Collaborative Filtering , 2019, 2019 IEEE International Conference on Data Mining (ICDM).

[39]  Andrew L. Maas Rectifier Nonlinearities Improve Neural Network Acoustic Models , 2013 .

[40]  Tat-Seng Chua,et al.  Fast Matrix Factorization for Online Recommendation with Implicit Feedback , 2016, SIGIR.

[41]  John Riedl,et al.  Item-based collaborative filtering recommendation algorithms , 2001, WWW '01.

[42]  Lior Rokach,et al.  Introduction to Recommender Systems Handbook , 2011, Recommender Systems Handbook.

[43]  Daniel R. Figueiredo,et al.  struc2vec: Learning Node Representations from Structural Identity , 2017, KDD.

[44]  Weinan Zhang,et al.  An end-to-end neighborhood-based interaction model for knowledge-enhanced recommendation , 2019, Proceedings of the 1st International Workshop on Deep Learning Practice for High-Dimensional Sparse Data.

[45]  Thomas Hofmann,et al.  Hyperbolic Neural Networks , 2018, NeurIPS.

[46]  Kevin Chen-Chuan Chang,et al.  Geom-GCN: Geometric Graph Convolutional Networks , 2020, ICLR.

[47]  Xiao Wang,et al.  Hyperbolic Heterogeneous Information Network Embedding , 2019, AAAI.

[48]  Lei Zheng,et al.  Spectral collaborative filtering , 2018, RecSys.