Geomicrobiology of Caves: A Review

In this article, we provide a review of geomicrobiological interactions in caves, which are nutrient-limited environments containing a variety of redox interfaces. Interactions of cave microorganisms and mineral environments lead to the dissolution of, or precipitation on, host rock and speleothems (secondary mineral formations). Metabolic processes of sulfur-, iron-, and manganese-oxidizing bacteria can generate considerable acidity, dissolving cave walls and formations. Examples of possible microbially influenced corrosion include corrosion residues (e.g., Lechuguilla and Spider caves, New Mexico, USA), moonmilk from a number of caves (e.g., Spider Cave, New Mexico, and caves in the Italian Alps), and sulfuric acid speleogenesis and cave enlargement (e.g., Movile Cave, Romania, and Cueva de Villa Luz, Mexico). Precipitation processes in caves, as in surface environments, occur through active or passive processes. In caves, microbially induced mineralization is documented in the formation of carbonates, ...

[1]  C P McKay,et al.  On the possibility of chemosynthetic ecosystems in subsurface habitats on Mars. , 1992, Icarus.

[2]  L. Hose,et al.  CUEVA DE VILLA LUZ, TABASCO, MEXICO: RECONNAISSANCE STUDY OF AN ACTIVE SULFUR SPRING CAVE AND ECOSYSTEM , 1999 .

[3]  K. Konhauser Diversity of bacterial iron mineralization , 1998 .

[4]  M. M. Sweeting,et al.  Karst landforms , 1977, Nature.

[5]  C. Hill Sulfuric acid speleogenesis of Carlsbad Cavern and its relationship to hydrocarbons, Delaware Basin, New Mexico and Texas , 1990 .

[6]  G. Moore,et al.  Speleology: The Study of Caves , 1978 .

[7]  B. Jones,et al.  Biogenic structures and micrite in stalactites from Grand Cayman Island, British West Indies , 1987 .

[8]  Robert L. Folk,et al.  SEM imaging of bacteria and nannobacteria in carbonate sediments and rocks , 1993 .

[9]  G. Moore,et al.  Speleology: Caves and the Cave Environment , 1997 .

[10]  D. Northup,et al.  Microbiology and geochemistry in a hydrogen-sulphide-rich karst environment , 2000 .

[11]  P. Bennett,et al.  Microbial Control of Silicate Weathering in Organic-Rich Ground Water , 1992, Science.

[12]  R. Popa,et al.  Characterization of Thiobacillus thioparus LV43 and its distribution in a chemoautotrophically based groundwater ecosystem , 1997, Applied and environmental microbiology.

[13]  F. E. Egler Ecosystems of the World , 1960 .

[14]  G. Cox,et al.  Amino acid composition of stromatolitic stalagmites , 1994 .

[15]  T. Shakya.,et al.  Historical Introduction , 2002, Jewish Identities: Fifty Intellectuals Answer Ben-Gurion.

[16]  B. Jones Manganese precipitates in the karst terrain of Grand Cayman, British West Indies , 1992 .

[17]  B. Jones The role of microorganisms in phytokarst development on dolostones and limestones, Grand Cayman, British West Indies , 1989 .

[18]  D. G. Davis,et al.  HISTORY OF THE SULFURIC ACID THEORY OF SPELEO- GENESIS IN THE GUADALUPE MOUNTAINS, NEW MEXICO , 2000 .

[19]  D. Northup,et al.  Evidence for Microbial Involvement in Pool Finger Precipitation, Hidden Cave, New Mexico , 2001 .

[20]  K. Kuehn,et al.  A Mycofloral Survey of an Artesian Community Within the Edwards Aquifer of Central Texas , 1988 .

[21]  Robert Riding,et al.  Microbial carbonates: the geological record of calcified bacterial–algal mats and biofilms , 2000 .

[22]  M. Hanna Society of Economic Paleontologists and Mineralogists , 1927 .

[23]  P. Broughton Origin and distribution of mineral species in limestone caves , 1971 .

[24]  K. Konhauser Bacterial iron biomineralisation in nature , 1997 .

[25]  Wolfgang Sand,et al.  Microbial mechanisms of deterioration of inorganic substrates—A general mechanistic overview , 1997 .

[26]  C. Hill Sulfur redox reactions: Hydrocarbons, native sulfur, Mississippi Valley-type deposits, and sulfuric acid karst in the Delaware Basin, New Mexico and Texas , 1995 .

[27]  S. J. Caldwell,et al.  Fine structure of in situ microbial iron deposits , 1980 .

[28]  Annette Summers Engel,et al.  Acidic Cave-Wall Biofilms Located in the Frasassi Gorge, Italy , 2000 .

[29]  A. Uchman,et al.  Biogenic origin of manganese flowstones from Jaskinia Czarna Cave, Tatra Mts., Western Carpathians , 1995 .

[30]  K. Nealson,et al.  Iron isotope biosignatures. , 1999, Science.

[31]  G. Bitton,et al.  Biogeochemical ecology of Thiothrix spp. In underwater limestone caves , 1994 .

[32]  C. Moyer,et al.  Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pH , 1997, Applied and environmental microbiology.

[33]  F. Graf,et al.  Fungal quartz weathering and iron crystallite formation in an Alpine environment, Piz Alv, Switzerland , 1997 .

[34]  T. Ford,et al.  The Science of speleology , 1976 .

[35]  M. Menichetti,et al.  Geology and Biology of the Frasassi Caves in Central Italy: An Ecological Multi-disciplinary Study of a Hypogenic Underground Ecosystem. , 2000 .

[36]  A. Neumann,et al.  OBSERVATIONS ON COASTAL EROSION IN BERMUDA AND MEASUREMENTS OF THE BORING RATE OF THE SPONGE, CLIONA LAMPA1,2 , 1966 .

[37]  T. Barr,et al.  Cave Ecology and the Evolution of Troglobites , 1968 .

[38]  T. C. Kane,et al.  A Chemoautotrophically Based Cave Ecosystem , 1996, Science.

[39]  B. Onac,et al.  Deposition of Black Manganese and Iron-Rich Sediments in Vântului Cave (Romania) , 1997 .

[40]  M. Edington,et al.  Bacterial calcification in limestone caves , 1983 .

[41]  R. Caspi,et al.  Bacterially mediated mineral formation; insights into manganese(II) oxidation from molecular genetic and biochemical studies , 1997 .

[42]  B. Jones Microbial Sediments in Tropical Karst Terrains: A Model Based on the Cayman Islands , 2000 .

[43]  H. Roberts,et al.  Black Phytokarst from Hell, Cayman Islands, British West Indies , 1973 .

[44]  D. Culver Cave Life: Evolution and Ecology , 1982 .

[45]  K. Konhauser,et al.  Bacterial clay authigenesis: a common biogeochemical process , 1999 .

[46]  R. Pedersen,et al.  Presence of Rare-Earth Elements in Black Ferromanganese Coatings from Vântului Cave (Romania) , 1997 .

[47]  B. Jones,et al.  Morphology, relationship, and origin of fiber and dendrite calcite crystals , 1993 .

[48]  M. Fitzsimons,et al.  Chemoautotrophic Microbial Mats in Submarine Caves with Hydrothermal Sulphidic Springs at Cape Palinuro, Italy , 1998, Microbial Ecology.

[49]  R. Paterson,et al.  The Distributional history of the biota of the southern Appalachians , 1973 .

[50]  D. G. Frey Limnology in North America , 1963 .

[51]  M. Menichetti,et al.  Occurrence of hypogenic caves in a karst region: Examples from central Italy , 1995 .

[52]  S. Winogradsky Microbiologie du sol : problemes et methodes : Cinquante ans de recherches , 1949 .

[53]  K. Schleifer,et al.  Phylogenetic identification and in situ detection of individual microbial cells without cultivation. , 1995, Microbiological reviews.

[54]  G. L. Métayer-Levrel,et al.  La carbonatogenèse bactérienne dans les grottes. Étude au MEB d'une hélictite de Clamouse, Hérault, France , 1997 .

[55]  R. Folk Nannobacteria and the precipitation of carbonate in unusual environments , 1999 .

[56]  B. Jones,et al.  Calcite Moonmilk: Crystal Morphology and Environment of Formation in Caves in the Italian Alps , 2000 .

[57]  B. Leadbeater,et al.  Biomineralization in lower plants and animals. , 1986 .

[58]  W. Verstraete,et al.  Biochemical Ecology of Nitrification and Denitrification , 1977 .

[59]  B. Jones,et al.  Origin of Endogenetic Micrite in Karst Terrains: A Case Study from the Cayman Islands , 1995 .

[60]  A. Palmer Origin and morphology of limestone caves , 1991 .

[61]  R. Curl Caves as a Measure of Karst , 1966, The Journal of Geology.

[62]  C. Fliermans,et al.  Nitrobacter in Mammoth Cave , 1977 .

[63]  C. Saiz-Jimenez,et al.  Microbial communities associated with hydromagnesite and needle-fiber aragonite deposits in a karstic cave (Altamira, Northern Spain) , 1999 .

[64]  W. Ghiorse Biology of iron- and manganese-depositing bacteria. , 1984, Annual review of microbiology.

[65]  W. G. Wright,et al.  Bacteria, fungi and biokarst in Lechuguilla Cave, Carlsbad Caverns National Park, New Mexico , 1995 .

[66]  G. Cox,et al.  Cyanobacterially deposited speleothems: Subaerial stromatolites , 1989 .

[67]  T. C. Kane,et al.  Microbiological characterization of a sulfide‐rich groundwater ecosystem , 1994 .

[68]  D. Gillieson Caves: Processes, Development and Management , 1996 .

[69]  B. Heywood,et al.  Morphoanalysis of Bacterially Precipitated Subaqueous Calcium Carbonate from Weebubbie Cave, Australia , 2001 .

[70]  H. Chafetz,et al.  Bacterially Induced Lithification of Microbial Mats , 1992 .

[71]  N. Pace,et al.  Molecular phylogentic analysis of a bacterial community in Sulphur River, Parker Cave, Kentucky , 1998 .

[72]  A. Vandel,et al.  CHAPTER XX – THE METABOLISM OF CAVERNICOLOUS ANIMALS , 1965 .

[73]  F. Went Fungi Associated with Stalactite Growth , 1969, Science.

[74]  B. Jones Genesis of terrestrial oncoids, Cayman Islands, British West Indies , 1991 .

[75]  K. Simkiss,et al.  Biomineralization : cell biology and mineral deposition , 1989 .

[76]  D E Northup,et al.  Cave biosignature suites: microbes, minerals, and Mars. , 2001, Astrobiology.

[77]  N. Kashima On the wad-minerals from the cavern environment , 1983 .

[78]  M. Spilde,et al.  Mn-Oxide Minerals from a Terrestrial Cave Environment: Biomarkers for the Search for Life on Mars? , 2001 .

[79]  C. Dahm,et al.  Evidence for Geomicrobiological Interactions in Guadalupe Caves , 2000 .

[80]  M. C. Kennicutt,et al.  On the Biology of Submarine Caves with Sulphur Springs: Appraisal of 13C/12C Ratios as a Guide to Trophic Relations , 1996, Journal of the Marine Biological Association of the United Kingdom.

[81]  É. Verrecchia,et al.  Needle-fiber Calcite: A Critical Review and a Proposed Classification , 1994 .

[82]  G. Southam,et al.  A structural comparison of bacterial microfossils vs. 'nanobacteria' and nanofossils , 1999 .

[83]  S. Castanier,et al.  Ca-carbonates precipitation and limestone genesis — the microbiogeologist point of view , 1999 .

[84]  C. Allen,et al.  Microscopic physical biomarkers in carbonate hot springs: implications in the search for life on Mars. , 2000, Icarus.

[85]  H. Viles Biokarst: review and prospect , 1984 .

[86]  C. J. Alexopoulos,et al.  Algae and Fungi , 1967 .

[87]  W. Hess The Origin of Nitrates in Cavern Earths , 1900, The Journal of Geology.

[88]  Carol A. Hill,et al.  Cave Minerals of the World , 1976 .

[89]  Gerald M. Friedman,et al.  Principles of sedimentology , 1978 .

[90]  C. Hill Origin of Cave Saltpeter , 1981, The Journal of Geology.