Convergence of a Time‐Stepping Scheme for Rigid‐Body Dynamics and Resolution of Painlevé's Problem

Abstract.This paper gives convergence theory for a new implicit time‐stepping scheme for general rigid‐body dynamics with Coulomb friction and purely inelastic collisions and shocks. An important consequence of this work is the proof of existence of solutions of rigid‐body problems which include the famous counterexamples of Painlevé. The mathematical basis for this work is the formulation of the rigid‐body problem in terms of measure differential inclusions of Moreau and Monteiro Marques. The implicit time‐stepping method is based on complementarity problems, and is essentially a particular case of the algorithm described in Anitescu & Potra [2], which in turn is based on the formulation in Stewart & Trinkle [47].

[1]  É. Delassus Considérations sur le frottement de glissement , 1920 .

[2]  É. Delassus Sur les lois du frottement de glissement , 1923 .

[3]  I. P. Natanson,et al.  Theory of Functions of a Real Variable , 1955 .

[4]  J. Schwartz,et al.  Linear Operators. Part I: General Theory. , 1960 .

[5]  Per Lötstedt Coulomb Friction in Two-Dimensional Rigid Body Systems , 1981 .

[6]  K. Stromberg Introduction to classical real analysis , 1981 .

[7]  Per Lötstedt Time-dependent contact problems in rigid body mechanics , 1982 .

[8]  Per Lötstedt Mechanical Systems of Rigid Bodies Subject to Unilateral Constraints , 1982 .

[9]  J. Keller Impact With Friction , 1986 .

[10]  Edward J. Haug,et al.  Dynamics of mechanical systems with Coulomb friction, stiction, impact and constraint addition-deletion—III Spatial systems , 1986 .

[11]  Convex Function of a Measure the Unbounded Case , 1986 .

[12]  J. Moreau,et al.  Unilateral Contact and Dry Friction in Finite Freedom Dynamics , 1988 .

[13]  Yu Wang,et al.  On the inconsistency of rigid-body frictional planar mechanics , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[14]  W. Stronge Rigid body collisions with friction , 1990, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[15]  S. Campbell,et al.  Differentiation of Constraints in Differential-Algebraic Equations∗ , 1991 .

[16]  Richard W. Cottle,et al.  Linear Complementarity Problem. , 1992 .

[17]  M. T. Mason,et al.  Two-Dimensional Rigid-Body Collisions With Friction , 1992 .

[18]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[19]  M. Marques,et al.  Differential Inclusions in Nonsmooth Mechanical Problems: Shocks and Dry Friction , 1993 .

[20]  Michael A. Erdmann,et al.  On a Representation of Friction in Configuration Space , 1994, Int. J. Robotics Res..

[21]  David Baraff,et al.  Fast contact force computation for nonpenetrating rigid bodies , 1994, SIGGRAPH.

[22]  J. Trinkle,et al.  On Dynamic Multi‐Rigid‐Body Contact Problems with Coulomb Friction , 1995 .

[23]  J. Moreau Numerical Experiments in Granular Dynamics: Vibration-Induced Size Segregation , 1995 .

[24]  Linda R. Petzold,et al.  Numerical solution of initial-value problems in differential-algebraic equations , 1996, Classics in applied mathematics.

[25]  M. Anitescu,et al.  Formulating Three-Dimensional Contact Dynamics Problems , 1996 .

[26]  Jeffrey C. Trinkle,et al.  Complementarity formulations and existence of solutions of dynamic multi-rigid-body contact problems with coulomb friction , 1996, Math. Program..

[27]  Friedrich Pfeiffer,et al.  Multibody Dynamics with Unilateral Contacts , 1996 .

[28]  D. Stewart,et al.  AN IMPLICIT TIME-STEPPING SCHEME FOR RIGID BODY DYNAMICS WITH INELASTIC COLLISIONS AND COULOMB FRICTION , 1996 .

[29]  P. Cleary,et al.  Use of particle methods to design mineral processing equipment , 1996 .

[30]  Mark R. Cutkosky,et al.  Practical Force-Motion Models for Sliding Manipulation , 1996, Int. J. Robotics Res..

[31]  M. Anitescu,et al.  Formulating Dynamic Multi-Rigid-Body Contact Problems with Friction as Solvable Linear Complementarity Problems , 1997 .

[32]  Jeffrey C. Trinkle,et al.  Dynamic multi-rigid-body systems with concurrent distributed contacts , 1997, Proceedings of International Conference on Robotics and Automation.

[33]  G. Stavroulakis Multibody Dynamics with Unilateral Contacts by Friedrich Pfeiffer and Christoph Glocker, Wiley, New York, 1996 , 1998 .

[34]  R. Kanwal Generalized Functions: Theory and Technique , 1998 .